首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of abscisic acid (ABA) by detached and partially dehydrated wheat leaves is known to be inherited in a quantitative manner. The location of genes having a major effect on drought-induced ABA accumulation in wheat was determined using a set of single chromosome substitution lines and populations derived from a cross between a high-ABA- and a low-ABA-producing genotype. Examination of a series of chromosome substitution lines of the high-ABA genotype Ciano 67 into the low-ABA recipient Chinese Spring showed that chromosome 5A carries gene(s) that have a major influence on ABA accumulation in a drought test with detached and partially dehydrated leaves (DLT). A similar DLT was used to examine ABA accumulation in a population of F2 plants and doubled haploid (DH) lines derived from the cross between Chinese Spring (low-ABA) and SQ1 (high-ABA) in which the F2 population (139 plants) and DH lines (96 lines) were also mapped partially with molecular markers. Analysis of variance of ABA accumulation between and within marker allele classes in the F2 confirmed the location of a gene(s) regulating ABA accumulation on the long arm of chromosome 5A. MAPMAKERQTL showed the most likely position for the ABA quantitative trait locus (QTL) to be between the loci Xpsr575 and Xpsr426, about 8 cM from Xpsr426. A similar trend for high ABA accumulation was found in DH lines having the SQ1 allele at marker loci in the same region of chromosome 5AL, but the QTL effect was not significant. The function of the QTL is discussed.  相似文献   

2.
HENSON  I. E. 《Annals of botany》1985,56(4):481-487
The ability of detached leaves of the rice cultivars IR20 and63–83 and their F2 progeny to accumulate ABA in responseto water stress is negatively correlated with leaf size. Itwas shown that this association was not an artifact of incubationconditions following the imposition of stress. Also, it waspossible to break the correlation by selecting plants in segregatingpopulations which differed in ABA yet had similar leaf size. In further experiments, leaf size was altered phenotypicallyby various treatments; either being increased by gibberellinapplication or periodic removal of tillers, or reduced by priorexposure to water stress or ABA. Although responses to thesetreatments were complex, the results demonstrated that leafsize and accumulation capacity were at least partially independent.It is suggested that the correlations observed previously inF2 populations from the cross IR20 x 63–83 were a resultof genetic linkage. Oryza saliva L., rice, leaf size, abscisic acid, water stress  相似文献   

3.
The inbred maize lines Poljl7 and F-2 have previously been shown to differ by up to three-fold in leaf abscisic acid (ABA) concentration in the field. Lines from the cross Poljl7 × F-2 differing in leaf ABA concentrations, and the parents, were studied in the field to characterize the differences amongst the lines in ABA concentrations during the season, during the day and in different parts of the plants. The water status of the plants was measured and leaves were heat girdled to get information on possible causes for the genetic variation amongst the lines in ABA concentration. Leaf ABA concentrations of the high-AB A lines increased markedly and consistently from flowering time onwards, whereas leaf ABA concentrations of the low-ABA lines gradually fell after flowering. Leaf water potentials of high-ABA and low-ABA lines were similar during this time. Leaf ABA concentrations varied little during the day, and heat girdling caused a rise in ABA concentrations, which was similar in both high-ABA and low-ABA lines, only after girdling for at least 4 h. ABA concentrations were highest in the leaves and it was only in the leaves and developing kernels that substantial differences in ABA concentrations were found between the high-ABA and low-ABA classes. Although aerial brace roots also had high ABA concentrations, other roots and stem internodes had ABA concentrations which were consistently low and the same for both ABA classes. Differences between the ABA classes were unlikely to be due to differences in leaf water status or in ABA export from the leaves. Other possible explanations for the genotypic differences in leaf ABA concentrations are discussed.  相似文献   

4.
水稻种子萌发和苗期ABA敏感性的QTL定位分析   总被引:3,自引:0,他引:3  
植物激素ABA参与不同的生理过程,尤其是在种子发育和非生物逆境的适应都需要ABA的调控.以水稻珍汕97和旱稻IRAT109为亲本的重组自交系群体为材料,分别调查种子发芽和苗期对ABA的敏感程度.种子发芽阶段以ABA处理下的相对发芽势(Relative germination vigor,RGV)和相对发芽率(Relative germination rate,RGR)为指标,苗期以ABA喷施处理下的卷叶程度(Leaf rolling scores by ABA spaying,LRS)和含ABA水培条件下的卷叶程度(Leaf rolling scores by ABA culturing,LRC)为指标.性状相关分析表明发芽阶段的相对发芽势与苗期卷叶程度呈显著正相关.用复合区间作图法和混合线性模型对ABA敏感性QTL定位和上位性效应分析.两种软件检测到的主效QTL位点大致相同.共检测到5个单位点QTL和6对上位性QTL与发芽阶段的ABA敏感性有关;8个单位点QTL和5对上位性QTL与水稻苗期对ABA的敏感性有关;在苗期,两种ABA处理条件下共检测到两个共同的QTL;仅一个共同的QTL同时控制发芽阶段和苗期对ABA的敏感性.这些研究结果说明,水稻对ABA的敏感性同时受单位点的多基因和上位性基因控制;而且控制种子萌发阶段发芽势和苗期对ABA敏感性的遗传基础有很大的不同.  相似文献   

5.
HENSON  I. E. 《Annals of botany》1983,52(3):385-398
When water stress was imposed on detached leaves of two rice(Oryza sativa L.) cultivars, more ABA per unit fresh weightaccumulated in IR20, a small-leaved cultivar, than in 63–83,a large-leaved cultivar; the difference being up to threefold.In an F2 population of a cross between the two cultivars ABAaccumulation was found to be significantly negatively correlatedwith leaf fresh weight. This correlation persisted in the F3generation. Such a correlation was not evident, however, whena number of rice cultivars, which varied widely in leaf size,were examined. The difference in ABA accumulation between IR20 and 63–83was not accounted for by different spatial patterns of waterloss or ABA accumulation within a leaf, and cultivar differencesin ABA content were maintained both across, and at various positionsalong the leaf. No major differences in leaf anatomy were observed between thetwo cultivars. Differences found in leaf water relations characteristicswere few and generally minor. It therefore seems unlikely thatthese properties account for the difference between the cultivarsin the ability to accumulate ABA or for the correlation withleaf size. Oryza sativa L, rice, water stress, abscisic acid, leaf size  相似文献   

6.
Abscisic acid (ABA) is one of the important plant hormones, which plays a critical role in seed development and adaptation to abiotic stresses. The sensitivity of rice (Oryza sativa L.) to exogenous ABA at seed germination and seedling stages was investigated in the recombinant inbred line (RIL) population derived from a cross between irrigated rice Zhenshan 97 and upland rice IRAT109, using relative germination vigor (RGV), relative germination rate (RGR) and leaf rolling scores of spraying (LRS) or culturing (LRC) with ABA as sensitivity indexes. The phenotypic correlation analysis revealed that only RGV at germination stage was positively correlated to ABA sensitivity at seedling stage. QTL detection using composite interval mapping (CIM) and mixed linear model was conducted to dissect the genetic basis of ABA sensitivity, and the single-locus QTLS detected by both methods are in good agreement with each other. Five single QTLs and six pairs of epistatic QTLs were detected for ABA sensitivity at germination stage. Eight single QTLs and five pairs of epistatic QTLs were detected for ABA sensitivity at seedling stage. Two QTLs were common between LRS and LRC; and one common QTL was detected for RGV, LRS and LRC simultaneously. These results indicated that both single and epistatic loci were involved in the ABA sensitivity in rice, and the genetic basis of ABA sensitivity at seed germination and seedling stage was largely different.  相似文献   

7.
许多研究认为,在一定范围内,叶绿素含量与光合速率成正相关关系、叶绿素含量高的水稻叶片能延缓衰老。理论上推算,水稻叶片如果推迟1天衰老,可使水稻增产2%左右,而实际实验结果表明可增产1%左右。叶片早衰往往也是造成有些水稻品种结实率偏低、空秕率较高及产量降低的主要原因。叶片衰老是水稻发育过程中的生命现象,它是水稻在长期进化过程中形成的适应性。叶片衰老的显著特征之一是叶绿素含量下降,叶色褪绿变黄。[第一段]  相似文献   

8.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

9.
Quantitative trait loci for phyllochron and tillering in rice   总被引:4,自引:0,他引:4  
Morphogenetic processes in sequentially growing leaves and tiller buds are highly synchronized in rice (Oryza sativa L.). Consequently, the appearance of successive leaves in the main tiller acts as the pacemaker for the whole shoot system development. The time interval between the appearance of successive leaves (days/leaf) in the main tiller is called the phyllochron. The objectives of the investigation reported here were: (1) to identify quantitative trait loci (QTLs) that control rice phyllochron and (2) to understand the roles of phyllochron QTLs as an underlying developmental factor for rice tillering. For this purpose we developed a set of recombinant inbred lines derived from a cross between IR36 (indica) and Genjah Wangkal (tropical japonica). Composite interval mapping detected three phyllochron QTLs located on chromosomes 4, 10 and 11, where the presence of a Genjah Wangkal allele increased phyllochron. The largest QTL (on chromosome 4) was located on the genomic region syntenic to the vicinity of the maize Teopod 2 mutation, while the QTL on chromosome 10 was close to the rice plastochron 1 mutation. These three phyllochron QTLs failed to coincide with major tiller number QTLs. However, one tiller number QTL was associated with small LOD peaks for phyllochron and tiller-bud dormancy that were linked in coupling phase, suggesting that linked small effects of phyllochron and tiller-bud dormancy might result in a multiplicative effect on tiller number.  相似文献   

10.
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species.  相似文献   

11.
Polyethylene glycol (PEG)-treatment decreased chlorophyll and protein contents and increased NH4 + content due to decreased glutamine synthetase activity in detached rice leaves. PEG-treatment also increased abscisic acid (ABA) content and decreased ethylene production. Addition of fluridone, an inhibitor of ABA biosynthesis, reduced ABA content in rice leaves but did not prevent chlorophyll and protein loss in rice leaves induced by PEG. Silver thiosulfate, an inhibitor of ethylene action, was effective in preventing PEG-promoted chlorophyll and protein loss, but had no effect on PEG-induced NH4 + accumulation. The current results suggest that NH4 + accumulation in rice leaves induced by PEG increases leaf sensitivity to ethylene, which in turn results in an enhancement of chlorophyll and protein loss. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Plant growth can be studied at different organizational levels, varying from cell, leaf, and shoot to the whole plant. The early growth of seedlings is important for the plant's establishment and its eventual success. Wheat (Triticum aestivum, genome AABBDD) seedlings exhibit a low early growth rate or early vigor. The germplasm of wheat is limited. Wild relatives constitute a source of genetic variation. We explored the physiological and genetic relationships among a range of early vigor traits in Aegilops tauschii, the D-genome donor. A genetic map was constructed with amplified fragment-length polymorphism and simple sequence repeat markers, and quantitative trait loci (QTL) analysis was performed on the F(4) population of recombinant inbred lines derived from a cross between contrasting accessions. The genetic map consisted of 10 linkage groups, which were assigned to the seven chromosomes and covered 68% of the D genome. QTL analysis revealed 87 mapped QTLs (log of the odds >2.65) in clusters, 3.1 QTLs per trait, explaining 32% of the phenotypic variance. Chromosomes 1D, 4D, and 7D harbored QTLs for relative growth rate, biomass allocation, specific leaf area, leaf area ratio, and unit leaf rate. Chromosome 2D covered QTLs for rate and duration of leaf elongation, cell production rate, and cell length. Chromosome 5D harbored QTLs for the total leaf mass and area and growth rate of the number of leaves and tillers. The results show that several physiological correlations between growth traits have a genetic basis. Genetic links between traits are not absolute, opening perspectives for identification of favorable alleles in A. tauschii to improve early vigor in wheat.  相似文献   

13.
A genetic study is presented for traits relating to nitrogen use in wheat. Quantitative trait loci (QTLs) were established for 21 traits relating to growth, yield and leaf nitrogen (N) assimilation during grain fill in hexaploid wheat (Triticum aestivum L.) using a mapping population from the cross Chinese Spring × SQ1. Glutamine synthetase (GS) isozymes and estimated locations of 126 genes were placed on the genetic map. QTLs for flag leaf GS activity, soluble protein, extract colour and fresh weight were found in similar regions implying shared control of leaf metabolism and leaf size. Flag leaf traits were negatively associated with days to anthesis both phenotypically and genetically, demonstrating the complex interactions of metabolism with development. One QTL cluster for GS activity co-localised with a GS2 gene mapped on chromosome 2A, and another with the mapped GSr gene on 4A. QTLs for GS activity were invariably co-localised with those for grain N, with increased activity associated with higher grain N, but with no or negative correlations with grain yield components. Peduncle N was positively correlated, and QTLs co-localised, with grain N and flag leaf N assimilatory traits, suggesting that stem N can be indicative of grain N status in wheat. A major QTL for ear number per plant was identified on chromosome 6B which was negatively co-localised with leaf fresh weight, peduncle N, grain N and grain yield. This locus is involved in processes defining the control of tiller number and consequently assimilate partitioning and deserves further examination. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

14.

Key message

QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat.

Abstract

This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3–68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.
  相似文献   

15.
Summary Incubation of detached wheat leaves in water in the light results in a temporary accumulation of starch in the chloroplasts. This accumulation is prevented by treatment with ABA. On the other hand, treatment of the detached leaves with kinetin causes a large increase in the size and number of starch grains.  相似文献   

16.
Experiments were conducted to compare the effects of abscisicacid (ABA) and water stress treatments on leaf morphology andfloral development in a spring wheat. In one experiment injectionsof ABA or a control solution were given twice a week into thebase of the main stem for a period of 3 weeks. In a similarexperiment control plants were watered daily and treated plantswere subjected to water stress by watering only once a week.In both experiments the treated plants produced smaller leavesand fewer spikelets per ear. Analysis of epidermal morphologyusing polystyrene imprints of selected leaf blades from themain stem and a tiller of each plant showed that, compared withcontrol plants, both ABA and water stress decreased the meancell size, reduced the number of stomata per leaf, and increasedthe production of trichomes in all the leaves sampled. Datafor stomatal lengths and stomatal indices showed differencesbetween a main stem leaf and a tiller leaf which were consistentfor both experiments. It is concluded that ABA could mediatemany of the responses of wheat plants to prolonged water stress.The possible adaptive value of these responses is discussed.  相似文献   

17.
18.
The relation between abscisic acid (ABA) and proline accumulation was investigated in detached rice (Oryza sativa L.) leaves. In darkness, proline content increased about 2-, 2,5- and 6-fold after 24, 48 and 72 h. ABA content reached maximum after 48 h. In the light, proline content remained almost unchanged until 48 h and subsequently increased slightly. ABA content in the light was lower than in darkness, but the maximum was also after 48 h. During 12-h exposure to decreased air humidity, proline content gradually increased, but ABA content increased about 25-fold after 4 h and declined thereafter. Exogenous application of ABA resulted in an increase in proline content in detached rice leaves under both light and darkness.  相似文献   

19.
Previous studies with 95 bread wheat doubled haploid lines (DHLs) from the cross Chinese Spring (CS)xSQ1 trialled over 24 yearxtreatmentxlocations identified major yield quantitative trait loci (QTLs) in homoeologous locations on 7AL and 7BL, expressed mainly under stressed and non-stressed conditions, respectively. SQ1 and CS contributed alleles increasing yield on 7AL and 7BL, respectively. The yield component most strongly associated with these QTLs was grains per ear. Additional results which focus on the 7AL yield QTL are presented here. Trials monitoring agronomic, morphological, physiological, and anatomical traits revealed that the 7AL yield QTL was not associated with differences in flowering time or plant height, but with significant differences in biomass at maturity and anthesis, biomass per tiller, and biomass during tillering. In some trials, flag leaf chlorophyll content and leaf width at tillering were also associated with the QTL. Thus, it is likely that the yield gene(s) on 7AL affects plant productivity. Near-isogenic lines (NILs) for the 7AL yield QTL with CS or SQ1 alleles in an SQ1 background showed the SQ1 allele to be associated with >20% higher yield per ear, significantly higher flag leaf chlorophyll content, and wider flag leaves. Epidermal cell width and distance between leaf vascular bundles did not differ significantly between NILs, so the yield-associated gene may influence the number of cell files across the leaf through effects on cell division. Interestingly, comparative mapping with rice identified AINTEGUMENTA and G-protein subunit genes affecting lateral cell division at locations homologous to the wheat 7AL yield QTL.  相似文献   

20.
Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.

When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号