首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 10(6) to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >10(6) cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.  相似文献   

2.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

3.
16S rRNA gene-targeted group-specific primers were designed and validated for specific detection and quantification of the Clostridium leptum subgroup and the Atopobium cluster. To monitor the predominant bacteria in human feces by real-time PCR, we used these specific primers together with four sets of group-specific primers for the Clostridium coccoides group, the Bacteroides fragilis group, Bifidobacterium, and Prevotella developed in a previous study (T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka, Appl. Environ. Microbiol. 68:5445-5451, 2002). Examination of DNA extracted from the feces of 46 healthy adults showed that the C. coccoides group was present in the greatest numbers (log10 10.3 ± 0.3 cells per g [wet weight] [average ± standard deviation]), followed by the C. leptum subgroup (log10 9.9 ± 0.7 cells per g [wet weight]), the B. fragilis group (log10 9.9 ± 0.3 cells per g [wet weight]), Bifidobacterium (log10 9.4 ± 0.7 cells per g [wet weight]), and the Atopobium cluster (log10 9.3 ± 0.7 cells per g [wet weight]). These five bacterial groups were detected in all 46 volunteers. Prevotella was found in only 46% of the subjects at a level of log10 9.7 ± 0.8 cells per g (wet weight). Examination of changes in the population and the composition of the intestinal flora for six healthy adults over an 8-month period revealed that the composition of the flora of each volunteer remained stable throughout the test period.  相似文献   

4.
For the detection and identification of predominant bacteria in human feces, 16S rRNA-gene-targeted group-specific primers for the Bacteroides fragilis group, Bifidobacterium, the Clostridium coccoides group, and Prevotella were designed and evaluated. The specificity of these primers was confirmed by using DNA extracted from 90 species that are commonly found in the human intestinal microflora. The group-specific primers were then used for identification of 300 isolates from feces of six healthy volunteers. The isolates were clearly identified as 117 isolates of the B. fragilis group, 22 isolates of Bifidobacterium, 65 isolates of the C. coccoides group, and 17 isolates of Prevotella, indicating that 74% of the isolates were identified with the four pairs of primers. The remaining 79 isolates were identified by 16S ribosomal DNA sequence analysis and consisted of 40 isolates of Collinsella, 24 isolates of the Clostridium leptum subgroup, and 15 isolates of disparate clusters. In addition, qualitative detection of these bacterial groups was accomplished without cultivation by using DNA extracted from the fecal samples. The goal for this specific PCR technique is to develop a procedure for quantitative detection of these bacterial groups, and a real-time quantitative PCR for detection of Bifidobacterium is now being investigated (T. Requena, J. Burton, T. Matsuki, K. Munro, M. A. Simon, R. Tanaka, K. Watanabe, and G. W. Tannock, Appl. Environ. Microbiol. 68:2420-2427, 2002). Therefore, the approaches used to detect and identify predominant bacteria with the group-specific primers described here should contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

5.

Objectives

Bifidobacterium species are one of the major components of the infant''s intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant''s intestine.

Materials and Methods

Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5). Mother''s feces were collected twice before delivery. Infant''s feces were collected at 0 (meconium), 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant''s feces were analyzed by quantitative real-time PCR.

Results

Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother''s and infant''s intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant''s intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age.

Conclusions

Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant''s intestine shortly after birth. Our data suggest that the mother''s intestine is an important source for the vaginal delivered infant''s intestinal microbiota.  相似文献   

6.
ObjectivesAmoxicillin is a beta-lactam antibiotic largely used in childhood. However only few studies described its impact on composition of children gut microbiota, in particular on Bifidobacterium populations considered as beneficial microorganisms. In this study, the impact on faecal Bifidobacterium species of a seven-day amoxicillin treatment was quantitatively and qualitatively assessed in infants during an episode of acute respiratory infection.MethodsFaecal samples from 31 infants were obtained on day 0 (just before amoxicillin therapy) and on day 7 (the end of therapy). Total DNA was extracted and bifidobacteria were quantified using real-time PCR. Predominant Bifidobacterium species were then identified using specific PCR-TTGE.ResultsBifidobacteria concentrations were not significantly altered by amoxicillin compared to the healthy group. However, amoxicillin treatment induced a complete disappearance of Bifidobacterium adolescentis species (occurrence rate of 0% versus 36.4% in healthy group, P < 0.001), a significant decrease in the occurrence rate of Bifidobacterium bifidum (23% versus 54.5% in healthy group, P < 0.05), but did not affect Bifidobacterium longum (93.5% versus 100% in healthy group) and Bifidobacterium pseudocatenulatum/B. catenulatum (about 55% in both groups). The number of Bifidobacterium species per microbiota significantly decreased from 2.5 ± 1 for healthy group to 1.8 ± 0.9 for treated infants (P < 0.05).ConclusionsThis study showed that a 7 day amoxicillin treatment did not alter the counts of Bifidobacterium. However amoxicillin can have an impact by changing the microbiota at the species level and decreased the diversity of this population.  相似文献   

7.
A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.  相似文献   

8.
《Anaerobe》2000,6(3):169-177
Twenty-five Bifidobacterium strains isolated from infants' faeces were identified by Rep-PCR. Using BOX-PCR, characteristic bands of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis and Bifidobacterium adolescentis were found in 40 strains of bidfidobacteria. These bands were not found in lactobacilli. By computerized numerical analysis strains were grouped in two major clusters. Strains of B. bifidum fell into a well-differentiated cluster that joined the cluster of the remaining species at 0.771 of similarity. The predominant species among the isolated strains were Bifidobacterium bifidum, Bifidobacterium longum andBifidobacterium breve . In another set of experiments, DNA was extracted from bacteria harvested from fermented milks to which different concentrations of bifidobacteria had been added. In all cases characteristic bands in the agarose gel belonging to lactobacilli and streptococci were detected. Bifidobacterium was detected only when 108CFU/ml were added to the fermented milks. On the basis of our results, we propose this methodology as another tool in the polyphasic taxonomy.  相似文献   

9.
A culture-independent approach based on genus-specific PCR and denaturing gradient gel electrophoresis (DGGE) was used to monitor qualitative changes in fecal bifidobacterial communities in a human feeding trial. DNA was extracted directly from feces and bifidobacterial 16S rDNA sequences were amplified using genus-specific PCR. The PCR fragments were subsequently separated in a sequence-specific manner by DGGE in order to obtain a profile of bifidobacterial fragments. The DGGE profiles revealed that in general, administration for two weeks of galactooligosaccharide and/or Bifidobacterium lactis Bb-12 (8 g and 3 × 1010 cfu per day, respectively) did not affect the qualitative composition of the indigenous Bifidobacterium population, while B. lactis Bb-12 transiently colonised the gut.  相似文献   

10.
We describe the development and validation of a method for the qualitative analysis of complex bifidobacterial communities based on PCR and denaturing gradient gel electrophoresis (DGGE). Bifidobacterium genus-specific primers were used to amplify an approximately 520-bp fragment from the 16S ribosomal DNA (rDNA), and the fragments were separated in a sequence-specific manner in DGGE. PCR products of the same length from different bifidobacterial species showed good separation upon DGGE. DGGE of fecal 16S rDNA amplicons from five adult individuals showed host-specific populations of bifidobacteria that were stable over a period of 4 weeks. Sequencing of fecal amplicons resulted in Bifidobacterium-like sequences, confirming that the profiles indeed represent the bifidobacterial population of feces. Bifidobacterium adolescentis was found to be the most common species in feces of the human adult subjects in this study. The methodological approach revealed intragenomic 16S rDNA heterogeneity in the type strain of B. adolescentis, E-981074. The strain was found to harbor five copies of 16S rDNA, two of which were sequenced. The two 16S rDNA sequences of B. adolescentis E-981074T exhibited microheterogeneity differing in eight positions over almost the total length of the gene.  相似文献   

11.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113–121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

12.
16SrDNA-targeted genus- and species-specific PCR primers have been developed and used for the identification and detection of bifidobacteria. These primers cover all of the described species that inhabit the human gut, or occur in dairy products. Identification of cultured bifidobacteria using PCR primer pairs is rapid and accurate, being based on nucleic acid sequences. Detection of bifidobacteria can be achieved using DNA extracted from human faeces as template in PCR reactions. We have found that, in adult faeces, the Bifidobacterium catenulatum group was the most commonly detected species, followed by Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum. In breastfed infants, Bifidobacterium breve was the most frequently detected species, followed by Bifidobacterium infantis, B. longum and B. bifidum. It was notable that the B. catenulatum group was detected with the highest frequency in adults, although it has often been reported that B. adolescentis is the most common species. Real-time, quantitative PCR using primers targeting 16S rDNA shows promise in the enumeration of bifidobacteria in faecal samples. The approach to detect the target bacteria with quantitative PCR described in this review will contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

13.
16S rRNA gene-targeted group-specific primers were designed and validated for specific detection and quantification of the Clostridium leptum subgroup and the Atopobium cluster. To monitor the predominant bacteria in human feces by real-time PCR, we used these specific primers together with four sets of group-specific primers for the Clostridium coccoides group, the Bacteroides fragilis group, Bifidobacterium, and Prevotella developed in a previous study (T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka, Appl. Environ. Microbiol. 68:5445-5451, 2002). Examination of DNA extracted from the feces of 46 healthy adults showed that the C. coccoides group was present in the greatest numbers (log10 10.3 +/- 0.3 cells per g [wet weight] [average +/- standard deviation]), followed by the C. leptum subgroup (log10 9.9 +/- 0.7 cells per g [wet weight]), the B. fragilis group (log10 9.9 +/- 0.3 cells per g [wet weight]), Bifidobacterium (log10 9.4 +/- 0.7 cells per g [wet weight]), and the Atopobium cluster (log10 9.3 +/- 0.7 cells per g [wet weight]). These five bacterial groups were detected in all 46 volunteers. Prevotella was found in only 46% of the subjects at a level of log10 9.7 +/- 0.8 cells per g (wet weight). Examination of changes in the population and the composition of the intestinal flora for six healthy adults over an 8-month period revealed that the composition of the flora of each volunteer remained stable throughout the test period.  相似文献   

14.
Fifty-one Bifidobacterium strains were isolated from the feces of healthy adults (30–40 years old) and seniors (older than 70 years of age). B. adolescentis, B. breve, B. infantis, and B. longum were isolated from the healthy adults and B. adolescentis and B. longum from elderly subjects. The tested bacteria bound, in vitro, to intestinal mucus in a strain dependent manner. The strains isolated from healthy adults, and especially B. adolescentis, bound better to intestinal mucus than those isolated from seniors. These results indicate that the mucosal adhesive properties of the human Bifidobacterium flora were reduced with the aging of the host. This shift to a Bifidobacterium flora with reduced adhesive abilities may explain the decrease in bifidobacteria levels in the intestinal microflora of aging people. Received: 7 February 2001 / Accepted: 3 April 2001  相似文献   

15.
The colonic microbiota mediates many cellular and molecular events in the host that are important to health. These processes can be affected in the elderly, because in some individuals, the composition and metabolic activities of the microbiota change with age. Detailed characterizations of the major groups of fecal bacteria in healthy young adults, in healthy elderly people, and in hospitalized elderly patients receiving antibiotics were made in this study, together with measurements of their metabolic activities, by analysis of fecal organic acid and ammonia concentrations. The results showed that total anaerobe numbers remained relatively constant in old people; however, individual bacterial genera changed markedly with age. Reductions in numbers of bacteroides and bifidobacteria in both elderly groups were accompanied by reduced species diversity. Bifidobacterial populations in particular showed marked variations in the dominant species, with Bifidobacterium angulatum and Bifidobacterium adolescentis being frequently isolated from the elderly and Bifidobacterium longum, Bifidobacterium catenulatum, Bifidobacterium boum, and Bifidobacterium infantis being detected only from the healthy young volunteers. Reductions in amylolytic activities of bacterial isolates in healthy elderly subjects and reduced short-chain fatty acid concentrations supported these findings, since bifidobacteria and bacteroides are important saccharolytic groups in the colon. Conversely, higher numbers of proteolytic bacteria were observed with feces samples from the antibiotic-treated elderly group, which were also associated with increased proteolytic species diversity (fusobacteria, clostridia, and propionibacteria). Other differences in the intestinal ecosystem in elderly subjects were observed, with alterations in the dominant clostridial species in combination with greater numbers of facultative anaerobes.  相似文献   

16.
Fifty bifidobacteria strains were isolated from fecal samples of allergic and age matched healthy infants. Allergic infants were found to have an adult type Bifidobacterium flora with high levels of Bifidobacterium adolescentis. Healthy infants had a typical infant Bifidobacterium flora with high levels of Bifidobacterium bifidum. These isolates were tested for their adhesive properties to human intestinal mucus. The adhesion of the fecal bifidobacteria from healthy infants was significantly higher (P<0.0001) than for allergic infants. This suggests a correlation between allergic disease and the composition of the intestinal bifidobacteria flora which has reduced adhesive abilities to the intestinal mucus. Therefore, dietary supplementation of bifidobacteria typical for healthy infants, may be beneficial in the treatment of allergic disorders.  相似文献   

17.
The species Bifidobacterium lactis, with its main representative strain Bb12 (DSM 10140), is a yoghurt isolate used as a probiotic strain and is commercially applied in different types of yoghurts and infant formulas. In order to ensure the genetic identity and safety of this bacterial isolate, species- and strain-specific molecular tools for genetic fingerprinting must be available to identify isolated bifidobacteria or lactic acid bacteria from, e.g., various clinical environments of relevance in medical microbiology. Two opposing rRNA gene-targeted primers have been developed for specific detection of this microorganism by PCR. The specificity of this approach was evaluated and verified with DNA samples isolated from single and mixed cultures of bifidobacteria and lactobacilli (48 isolates, including the type strains of 29 Bifidobacterium and 9 Lactobacillus species). Furthermore, we performed a Multiplex-PCR using oligonucleotide primers targeting a specific region of the 16S rRNA gene for the genus Bifidobacterium and a conserved eubacterial 16S rDNA sequence. The specificity and sensitivity of this detection with a pure culture of B. lactis were, respectively, 100 bacteria/ml after 25 cycles of PCR and 1 to 10 bacteria/ml after a 50-cycle nested-PCR approach.  相似文献   

18.
This study was designed to isolate different strains of the genus Bifidobacterium from the fecal material of neonates and to assess their ability to produce the cis-9, trans-11 conjugated linoleic acid (CLA) isomer from free linoleic acid. Fecal material was collected from 24 neonates aged between 3 days and 2 months in a neonatal unit (Erinville Hospital, Cork, Ireland). A total of 46 isolates from six neonates were confirmed to be Bifidobacterium species based on a combination of the fructose-6-phosphate phosphoketolase assay, RAPD [random(ly) amplified polymorphic DNA] PCR, pulsed-field gel electrophoresis (PFGE), and partial 16S ribosomal DNA sequencing. Interestingly, only 1 of the 11 neonates that had received antibiotic treatment produced bifidobacteria. PFGE after genomic digestion with the restriction enzyme XbaI demonstrated that the bifidobacteria population displayed considerable genomic diversity among the neonates, with each containing between one and five dominant strains, whereas 11 different macro restriction patterns were obtained. In only one case did a single strain appear in two neonates. All genetically distinct strains were then screened for CLA production after 72 h of incubation with 0.5 mg of free linoleic acid ml−1 by using gas-liquid chromatography. The most efficient producers belonged to the species Bifidobacterium breve, of which two different strains converted 29 and 27% of the free linoleic acid to the cis-9, trans-11 isomer per microgram of dry cells, respectively. In addition, a strain of Bifidobacterium bifidum showed a conversion rate of 18%/μg dry cells. The ability of some Bifidobacterium strains to produce CLA could be another human health-promoting property linked to members of the genus, given that this metabolite has demonstrated anticarcinogenic activity in vitro and in vivo.  相似文献   

19.
The in silico analysis of 36 sequenced genomes of bacteria of the Bifidobacterium genus determined the presence of 19 genes of toxin-antitoxin (TA) system that belong to the MazEF and RelBE families, including five mazF and two relE genes that encode toxins and 12 relB genes that encode antitoxins. A high level of gene (at the level of nucleotide changes) and genomic (presence or absence of genes in distinct genomes) polymorphism in the investigated genes was revealed. The highest level of polymorphism was observed in strains of the Bifidobacterium longum species, primarily in relB1-relB10 genes. Gene and genomic polymorphism might be used to identify the strain of B. longum species. PCR analysis of genomic DNA of 30 bifidobacteria strains belonging to the three species, B. longum, B. adolescentis, and B. bifidum, isolated from the intestinal microbiota of astronauts demonstrated the presence of mazF and relB genes. The observed polymorphism of TA genes indicates the presence of differences in bifidobacteria strains isolated from the intestinal microbiota of astronauts before and after space flight and the control group.  相似文献   

20.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号