首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. A. Johnson  C. I. Wu 《Genetics》1992,130(3):507-511
Recently, there has been much discussion regarding the hypothesis that divergence of meiotic drive systems in isolated populations can generate the patterns of reproductive isolation observed in animal hybridizations. One prediction from this hypothesis is that the sex ratio of hybrids with heterospecific sex chromosomes should greatly deviate from the Mendelian expectation of 50% female. From sex-ratio data in our Drosophila hybridization studies, we find no such deviation: the sex ratio of offspring of males with introgressed heterospecific Y chromosomes with various autosomal backgrounds does not differ from that of the pure species. We also discuss other aspects of the current meiotic drive models.  相似文献   

2.
Chromosomes from poppy (Papaver somniferum L.) and wheat (Triticum monococcum L.) were obtained from cell suspension cultures using a mass isolation procedure. Protein-depleted isolated chromosomes were produced using different modes of extraction (e.g., sodium chloride, dextran sulphate-heparin) and examined by protein electrophoresis as well as light and electron microscopy. The results are discussed as they relate to the reported structure of protein-depleted animal chromosomes. With respect to the scaffold model of mitotic chromosomes we conclude that i) nonhistone proteins seem to play a fundamental role in plant chromosome architecture; ii) DNA is a structural component of protein-depleted chromosomes; iii) centromeric regions may be of structural importance for the higher order organization of chromosomes; iv) the existence of a 2M NaCl resistant scaffold appears not to be a common feature to both plant and animal chromosomes; v) despite the absence of a typical scaffold in plant chromosomes our results suggest that the higher order organization of plant and animal chromosomes is similar if not the same.  相似文献   

3.
Symmetry in biology provides many intriguing puzzles to the scientist's mind. Chargaff's second parity rule states a symmetric distribution of oligonucleotides within a single strand of double-stranded DNA. While this rule has been verified in a wide range of microbial genomes, it still awaits explanation. In our study, we inquired into patterns of mono- and trinucleotide intra-strand parity in complex plant genomic sequences that became available during the last few years, and compared these to equally complex animal genomes. The degree and patterns of deviation from Chargaff's second rule were different between plant and animal species. We observed a universal inter-chromosomal homogeneity of mononucleotide skews in coding sequences of plant chromosomes, while the base composition of animal coding sequences differed between chromosomes even within a single species. We also found differences in the base composition of dicot introns in comparison to those of monocots. These genome-wide patterns were limited to genic regions and were not encountered in inter-genic sequences. We discuss the implications of our findings in relation to hypotheses about functional correlations of intra-strand parity which have hitherto been put forward. Furthermore, we propose more recent polyploidization and subsequent homogenization of homoeologues as a possible reason for more homogeneous skew patterns in plants.  相似文献   

4.
Studies of reproductive isolation between animal species have shown (i) that if one sex of the hybrids between two species is sterile or inviable, it is usually the heterogametic sex (Haldane's rule), and (ii) the genes on the sex chromosomes play a particularly large role in hybrid sterility and inviability. We propose an explanation for these two observations which is based on the changes in chromosome conformation which take place during gametogenesis. These changes are far greater in sex chromosomes than in autosomes. They are also greater in the heterogametic than in the homogametic sex. We suggest that the sensitivity of hybrids of the heterogametic sex to the genetic divergence that occurs during periods of population isolation is partly the result of the failure of their sex chromosomes to undergo appropriate conformational changes. This hypothesis explains why the sex chromosomes play a disproportionate role in post-zygotic, but not in pre-zygotic, isolation, and why often only the germ line is sensitive to hybridization.  相似文献   

5.
The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants.  相似文献   

6.
Molecular Characterization of a Maize B Chromosome Centric Sequence   总被引:28,自引:0,他引:28       下载免费PDF全文
Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analysis of this repeat shows homology to motifs mapped to various plant and animal centromeres and to the maize neocentromere. A precise localization of these sequences among breakpoints within the B centromere and an homology to a facultative centromere, suggest a role for this sequence in centromere function.  相似文献   

7.
A technique is presented for rapid C-banding of eukaryotic chromosomes with pinacyanol chloride. This technique has given excellent definition and clarity to chromosome bands in plant and animal chromosomes. In permanent mounts the chromosomes did not fade after storage for up to two years.  相似文献   

8.
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.  相似文献   

9.
Plant (Secale cereale, Triticum aestivum) and animal (Eyprepocnemis plorans) meiocytes were analyzed by indirect immunostaining with an antibody recognizing histone H3 phosphorylated at serine 10, to study the relationship between H3 phosphorylation and chromosome condensation at meiosis. To investigate whether the dynamics of histone H3 phosphorylation differs between chromosomes with a different mode of segregation, we included in this study mitotic cells and also meiotic cells of individuals forming bivalents plus three different types of univalents (A chromosomes, B chromosomes and X chromosome). During the first meiotic division, the H3 phosphorylation of the entire chromosomes initiates at the transition from leptotene to zygotene in rye and wheat, whereas in E. plorans it does so at diplotene. In all species analyzed H3 phosphorylation terminates toward interkinesis. The immunosignals at first meiotic division are identical in bivalents and univalents of A and B chromosomes, irrespective of their equational or reductional segregation at anaphase I. The grasshopper X chromosome, which always segregates reductionally, also shows the same pattern. Remarkable differences were found at second meiotic division between plant and animal material. In E. plorans H3 phosphorylation occurred all along the chromosomes, whereas in plants only the pericentromeric regions showed strong immunosignals from prophase II until telophase II. In addition, no immunolabeling was detectable on single chromatids resulting from equational segregation of plant A or B chromosome univalents during the preceding anaphase I. Simultaneous immunostaining with anti-tubulin and anti-phosphorylated H3 antibodies demonstrated that the kinetochores of all chromosomes interact with microtubules, even in the absence of detectable phosphorylated H3 immunosignals. The different pattern of H3 phosphorylation in plant and animal meiocytes suggests that this evolutionarily conserved post-translational chromatin modification might be involved in different roles in both types of organisms. The possibility that in plants H3 phosphorylation is related to sister chromatid cohesion is discussed.  相似文献   

10.
Sex chromosomes have been studied in many plant and animal species. However, few species are suitable as models to study the evolutionary histories of sex chromosomes. We previously demonstrated that papaya (Carica papaya) (2n = 2x = 18), a fruit tree in the family Caricaceae, contains recently emerged but cytologically heteromorphic X/Y chromosomes. We have been intrigued by the possible presence and evolution of sex chromosomes in other dioecious Caricaceae species. We selected a set of 22 bacterial artificial chromosome (BAC) clones that are distributed along the papaya X/Y chromosomes. These BACs were mapped to the meiotic pachytene chromosomes of Vasconcellea parviflora (2n = 2x = 18), a species that diverged from papaya ∼27 million years ago. We demonstrate that V. parviflora contains a pair of heteromorphic X/Y chromosomes that are homologous to the papaya X/Y chromosomes. The comparative mapping results revealed that the male-specific regions of the Y chromosomes (MSYs) probably initiated near the centromere of the Y chromosomes in both species. The two MSYs, however, shared only a small chromosomal domain near the centromere in otherwise rearranged chromosomes. The V. parviflora MSY expanded toward the short arm of the chromosome, whereas the papaya MSY expanded in the opposite direction. Most BACs mapped to papaya MSY were not located in V. parviflora MSY, revealing different DNA compositions in the two MSYs. These results suggest that mutation of gene(s) in the centromeric region may have triggered sex chromosome evolution in these plant species.  相似文献   

11.
12.
Plant diversity and the stability of foodwebs   总被引:1,自引:0,他引:1  
Insect outbreaks in forest and agriculture monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal foodweb dynamics in natural ecosystems. We tested this hypothesis by studying arthropod community dynamics in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade, we found that higher plant diversity increased the stability (i.e. lowered year-to-year variability) of a diverse (>700 species) arthropod community across trophic levels. As the number of plant species increased, the stability of both herbivore and predator species richness and of total herbivore abundance increased. The underlying mechanisms driving these diversity-stability relationships were plant diversity, via effects on primary productivity and plant community stability, and portfolio effects. Taken together, our results show that higher plant diversity provides more temporally consistent food and habitat resources to arthropod foodwebs. Consequently, actively managing for high plant diversity may have stronger than expected benefits for increasing animal diversity and controlling pest outbreaks.  相似文献   

13.
The presence of actin in eukaryotic nuclei and chromosomes,and especially in higher plant nuclei and chromosomes,has not been well established.We detected actin in meristematic cells of Allium cepa with indirect immunofluorescence technique and observed bright fluorescence in the intact nuclei and chromosomes,indicating that actin is present in the nuclei and chromosomes of the higher plant.We labeld sections of the meristematic cells of A.cepa with immunogold technique,gold parti cles were concentrated in condensed chromatin and nucleoli,confirming the results of the immunofluoresence observations.We traeated the nuclei and chromosomes of A.cepa with DNase I and 2M NaCl and obtained DNA-and histone-depleted nuclei and chromosomes.Indirect immunofluorescence tests showed that the DNA-and histonedepleted nuclei and chromosomes reacted positively with the anti-actin antibodies.These results demonstrate that the anti-actin antibodies.These results demonstrate that actin exists not only in intact nuclei and chromosomes,but also in DNA-and histone-depleted nuclei and chrmosomes of the plant.In addition,our immuno-fluorescence tests indicate that tropomyosin is present in the nuclei and chromosomes of A.cepa.  相似文献   

14.
Meiotic pairing constraints and the activity of sex chromosomes   总被引:5,自引:0,他引:5  
The state of activity and condensation of the sex chromosomes in gametocytes is frequently different from that found in somatic cells. For example, whereas the X chromosomes of XY males are euchromatic and active in somatic cells, they are usually condensed and inactive at the onset of meiosis; in the somatic cells of female mammals, one X chromosome is heterochromatic and inactive, but both X chromosomes are euchromatic and active early in meiosis. In species in which the female is the heterogametic sex (ZZ males and ZW females), the W chromosome, which is often seen as a condensed chromatin body in somatic cells, becomes euchromatic in early oocytes. We describe an hypothesis which can explain these changes in the activity and condensation of sex chromosomes in gametocytes. It is based on the fact that normal chromosome pairing seems to be essential for the survival of sex cells; chromosomal anomalies resulting in incomplete pairing during meiosis usually result in gametogenic loss. We argue that the changes seen in the sex chromosomes reflect the need to avoid pairing failure during meiosis. Pairing normally requires structural and conformational homology of the two chromosomes, but when the regions is avoided when these regions become heterochromatinized. This hypothesis provides an explanation for the changes found in gametocytes both in species with male heterogamety and those with female heterogamety. It also suggests possible reasons for the frequent origin of large supernumerary chromosomes from sex chromosomes, and for the reported lack of dosage compensation in species with female heterogamety.  相似文献   

15.
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome‐scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome‐wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad‐scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome‐scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.  相似文献   

16.
Plant mitochondrial DNA evolved rapidly in structure,but slowly in sequence   总被引:1,自引:0,他引:1  
Summary We examined the tempo and mode of mitochondrial DNA (mtDNA) evolution in six species of crucifers from two genera,Brassica andRaphanus. The six mtDNAs have undergone numerous internal rearrangements and therefore differ dramatically with respect to the sizes of their subgenomic circular chromosomes. Between 3 and 14 inversions must be postulated to account for the structural differences found between any two species. In contrast, these mtDNAs are extremely similar in primary sequence, differing at only 1–8 out of every 1000 bp. The point mutation rate in these plant mtDNAs is roughly 4 times slower than in land plant chloroplast DNA (cpDNA) and 100 times slower than in animal mtDNA. Conversely, the rate of rearrangements is extraordinarily faster in plant mtDNA than in cpDNA and animal mtDNA.  相似文献   

17.
Differential staining methods found extensive use in karyotype studies of many plant and animal species and provide for reliable identification of all chromosomes of the organism. Below we describe the most widespread methods and history of their advent. In addition, we discuss specific structure of the chromosomes and possible mechanisms responsible for differential segmentation.  相似文献   

18.
Differential staining methods found extensive use in karyotype studies of many plant and animal species and provide for reliable identification of all chromosomes of the organism. Below we describe the most widespread methods and history of their advent. In addition, we discuss specific structure of the chromosomes and possible mechanisms responsible for differential segmentation.  相似文献   

19.
20.
Kevin C. Burns  Babs Lake 《Oikos》2009,118(12):1901-1907
The size of fleshy fruits spans several orders of magnitude. However, the evolution of fruit size diversity is poorly understood. Fruit size diversity is hypothesised to result from several potential processes. The frugivore hypothesis postulates that different‐sized animal fruit consumers select for different‐sized fruits. The correlated selection hypothesis postulates that fruit size is allometrically related to other plant traits (e.g. leaf size, plant height); therefore differences in fruit size result from correlated evolution with other plant traits. We tested the frugivore and correlated selection hypotheses as potential explanations for fruit size diversity in two New Zealand study sites. We observed birds foraging for fruits over two fruiting seasons at each site and measured fruit size, leaf size and plant height in a total of 32 plant species. Relationships between average fruit size, leaf size, plant size and the average size of birds consuming each fruit species were then evaluated using phylogenetically independent contrasts. Similar results were obtained in both study sites. Fruit size was correlated with the size of avian fruit consumers, but was unrelated to leaf size or plant height. Therefore, results falsified the correlated selection hypothesis but failed to falsify the frugivore hypothesis. Although results suggest that frugivores may have influenced the evolution of fruit size in New Zealand, further study is needed to generate a mechanistic understanding of how frugivores may have selected for interspecific variation in fruit size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号