首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantities of endogenous indol-3yl-acetic acid (IAA) in endosperms and scutella of 6-day-old maize seedlings (Zea mays L. cv Giant White Horsetooth) were determined by a fluorimetric method. Endosperms were found to contain 33.4 nanograms IAA per plant, and scutella 7.5 nanograms IAA per plant. [5-3H]IAA applied to endosperms of 6-day-old seedlings moved into the roots and radioactivity accumulated at the apex of the primary root within 8 hours. Two to 7-day-old seedlings were treated simultaneously with [5-3H]IAA in the endosperm and [2-14C] IAA on the shoot apex. The patterns of transport into the root were found to change during ontogeny: in successively older plants, transport from the shoot into the roots increased relative to transport from the endosperm into the roots. The auxin required for the growth of maize roots could, therefore, partially be contributed by the shoot and endosperm. Ontogenetic changes in the relative importance of these two supplies could be of significance for the integration of growth and development between shoot and root.  相似文献   

2.
The biochemical basis for the ability of the pterocarpan phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g. 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate [3H]leucine, [3H]thymidine, or [3H]uridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of [14C]lactose and [14C]glycine into the vesicles when either d-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport [14C]α-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20°C results in the leakage of accumulated [14C]α-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidiol, and coumestrol, and daidzein, a compound structurally related to glycinol but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of [14C]glycine and of [14C]α-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidiol (50 micrograms per milliliter) inhibits d-lactate-dependent transport of [14C]glycine but not vectorial phosphorylation-mediated transport of [14C]α-methyl glucoside. Thus, capsidiol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.  相似文献   

3.
This study was conducted to examine protein synthesis and l-[35S] methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries l-[35S] methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endospern) for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages.  相似文献   

4.
Root border cells (RBCs) and their secreted mucilage are suggested to participate in the resistance against toxic metal cations, including aluminum (Al), in the rhizosphere. However, the mechanisms by which the individual cell populations respond to Al and their role in Al resistance still remain unclear. In this research, the response and tolerance of RBCs to Al toxicity were investigated in the root tips of two soybean cultivars [Zhechun No. 2 (Al-tolerant cultivar) and Huachun No. 18 (Al-sensitive cultivar)]. Al inhibited root elongation and increased pectin methylesterase (PME) activity in the root tip. Removal of RBCs from the root tips resulted in a more severe inhibition of root elongation, especially in Huachun No. 18. Increasing Al levels and treatment time decreased the relative percent viability of RBCs in situ and in vitro in both soybean cultivars. Al application significantly increased mucilage layer thickness around the detached RBCs of both cultivars. Additionally, a significantly higher relative percent cell viability of attached and detached RBCs and thicker mucilage layers were observed in Zhechun No. 2. The higher viability of attached and detached RBCs, as well as the thickening of the mucilage layer in separated RBCs, suggest that RBCs play an important role in protecting root apices from Al toxicity.  相似文献   

5.
Induction of Freezing Tolerance in Spinach during Cold Acclimation   总被引:8,自引:2,他引:6       下载免费PDF全文
Spinach (Spinacia oleracea L.) seedlings, grown in soil or on an agar medium in vitro, became cold acclimated when exposed to a constant 5°C. Plants subjected to cold acclimation, beginning 1 week postgermination, attained freezing tolerance levels similar to that achieved by seedlings that were cold acclimated beginning 3 weeks after sowing. Seedlings at 1 week of age had only cotyledonary leaves, while 3-week-old seedlings had developed true leaves. Plants grown in vitro were able to increase in freezing tolerance, but were slightly less hardy than soil-grown plants. These results suggest that spinach, a cool-season crop that begins growth in early spring when subzero temperatures are likely, can undergo cold acclimation at the earliest stages of development following germination. Axenic seedlings, grown in vitro, were used to develop a noninjurious radiolabeling technique. Leaf proteins were radiolabeled to specific activities of 105 counts per minute per microgram at 25°C or 5 × 104 counts per minute per microgram at 5°C over a 24 hour period. The ability to radiolabel leaf proteins of in vitro grown plants to high specific activities at low temperature, without injury or microbial contamination, will facilitate studies of cold acclimation.  相似文献   

6.
Huang JS  Barker KR 《Plant physiology》1991,96(4):1302-1307
Accumulation of the phytoalexin glyceollin I in roots of soybean (Glycine max [L.] Merr.) following inoculation with race 1 of Heterodera glycines Ichinohe, the soybean cyst nematode (SCN), was determined in a whole-root system by high performance liquid chromatography (HPLC) and in a cross-section system by a radioimmunoassay procedure. In the whole-root system, roots were harvested from controls and nematode-inoculated seedlings immediately after inoculation and at 2-day intervals for 8 days. The roots were extracted with ethanol, and the extracts were subjected to HPLC. Glyceollin I was not detected in roots of either resistant cultivar Centennial or susceptible cultivar Ransom immediately after inoculation with SCN but steadily accumulated in large quantity in roots of Centennial. Accumulation of glyceollin I in roots of Ransom following nematode inoculation was minimal. In the cross-section system, 3-day-old soybean seedlings were inoculated with juvenile nematodes, and root segments containing a single nematode were dissected from inoculated plants at 4-hour intervals under a dissecting microscope. The root segments were embedded in ice and cut into 16-micrometer sections with a cryostat microtome. The spatial and temporal distribution of glyceollin I was determined with a radioimmunoassay procedure specific for the phytoalexin. Glyceollin I was found to accumulate in tissues immediately adjacent to the head region of the nematode in Centennial but not in Ransom. Glyceollin I was detected 8 hours after nematode penetration, and the concentration increased steadily up to 0.3 micromole per milliliter in Centennial 24 hours after penetration.  相似文献   

7.
The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth’s scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K+, Mg2+ and Ca2+ were decreased, whereas Al3+ and P2O5 ? concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.  相似文献   

8.
Experiments were conducted to study the interaction of ethylene and the cytokinin N6-benzyladenine (BA) in promoting hypocotyl elongation in a dwarf strain of watermelon (Citrullus lanatus [Thunb] Matsu. and Nakai). Optimum promotion of hypocotyl elongation is elicited by an apical treatment with 0.2 microgram BA. At dosages above 0.3 microgram per apex, BA-enhancement of elongation is reduced concomitant with stimulation of ethylene production and lateral expansion of hypocotyls. Application of the ethylene biogenesis inhibitor, aminoethoxyvinylglycine, at dosages from 0.3 to 10 micrograms per apex inhibited BA-induced ethylene production. In seedlings treated with 0.2 microgram BA, 10 micrograms aminoethoxyvinylglycine per apex reduced ethylene production to about one-third of control levels and reduced BA stimulation of hypocotyl elongation by 74%. Exposure of watermelon seedlings to 60 ± 10 nanoliters per liter of ethylene in a flowing system nearly eliminated aminoethoxyvinylglycine inhibition of BA-promoted growth. The results suggest that physiological levels of internal ethylene are required for cytokinin promotion of hypocotyl elongation in watermelon.  相似文献   

9.
Potassium (K+) deficiency is an important abiotic stress which has severe influence on the growth and development of sweet potato. To investigate the difference on root morphology, ultrastructure and antioxidant enzyme system at early growth stage, two representative sweet potato cultivars (Ipomoea batatas [L.] Lam.) with different K+ deficiency tolerance capacities were hydroponically cultivated under normal K+ (control) and K+ deficiency (?K) treatments. The results showed that after 14 days of treatment, the root length, surface area, volume, and average diameter of Ningzishu 1 (sensitive to K+ deficiency) were significantly decreased under ?K treatment, by comparison, those corresponding decreases of Xushu 32 (tolerant to K+ deficiency) were lower and not significant (except for root length). In addition, the proportion of fine roots (diameter <0.5 mm) and thick root (d > 1.0 mm) of Xushu 32 seedlings increased significantly under condition of K+ deficiency. Through transmission electron microscopy observations, it can be found that Xushu 32 seedlings showed a more complete root cellular structure and slighter oxidative damage than Ningzishu 1 under ?K treatment. Moreover, the hydrogen peroxide content and malondialdehyde content in the root of Xushu 32 seedlings was significantly lower than that of Ningzishu 1, and the variations of superoxide dismutase, peroxidase, and catalase activities were pronouncedly less than those of Ningzishu 1. These differences between the two cultivars indicated that the stronger root morphology and nutrients absorption ability, and the better root cellular structure and physiological role of Xushu 32 seedlings could alleviate the damage of K+ deficiency stress. Thus, it might be a potential mechanism for cultivar tolerance to low K+ in sweet potato.  相似文献   

10.
Growth of Zea mays L. cv Potro roots was inhibited by the herbicide metsulfuron methyl (MSM) at the lowest concentration tested: 5 nanomoles per liter. Pretreatment of corn seeds with commercial 1,8-naphthalic anhydride (NA) at 1% (w/w) partially reversed MSM-induced root growth inhibition. MSM at a concentration of 52 nanomoles per liter was taken up rapidly by roots and accumulated in the corn tissue to concentrations three times those in the external medium; the safener NA increased MSM uptake up to 48 hours. The protective effect of NA was related to the ability of the safener to increase the metabolism of MSM; tenfold increases in the metabolic rates of MSM were observed in NA-pretreated corn seedlings grown for 48 hours on 52 nanomolar [14C]MSM solution. DNA synthesis determined by measurement of [3H]thymidine incorporation into DNA was inhibited by root MSM applications; after a 6-hour application period, 13 nanomolar MSM solution reduced DNA synthesis by 64%, and the same reduction was also observed with NA-pretreated seedlings. Pretreatment of corn seeds with safener NA did not increase the acetolactate synthase activity in the roots and did not change, up to 13 micromoles per liter, the in vitro sensitivity of roots to MSM.  相似文献   

11.
The effects of high aluminum concentrations in rat brain were studied using14C autoradiography to measure the uptake of [14C]2deoxy-d-glucose ([14C]2dG) and microbeam proteon-induced X-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T), and control animals were given sodium tartrate (Na-T). The14C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes, which included cerebral cortical atrophy. The results showed that there was a decreased uptake of [14C]2dG in cortical regions in which increased aluminum levels were measured, i.e., there was a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppm (mass fraction) or 3×109 Al atoms was obtained for Al under the conditions employed.  相似文献   

12.
Studies were conducted to determine the herbicidal site of clomazone action in tolerant-soybean (Glycine max [L.] Merr. cv Corsoy) (SB-M) and susceptible-cotton (Gossypium hirsutum [L.] cv Stoneville 825) (COT-M) photomixotrophic cell suspension cultures. Although a 10 micromolar clomazone treatment did not significantly reduce the terpene or mixed terpenoid content (microgram per gram fresh weight) of the SB-M cell line, there was over a 70% reduction in the chlorophyll (Chl), carotenoid (CAR), and plastoquinone (PQ) content of the COT-M cell line. The tocopherol (TOC) content was reduced only 35.6%. Reductions in the levels of Chl, CAR, TOC, and PQ indicate that the site of clomazone action in COT-M cells is prior to geranylgeranyl pyrophosphate (GGPP). The clomazone treatment did not significantly reduce the flow of [14C]mevalonate ([14C]MEV) (nanocuries per gram fresh weight) into CAR and the three mixed terpenoid compounds of SB-M cells. Conversely, [14C]MEV incorporation into CAR and the terpene moieties of Chl, PQ, and TOC in COT-M cells was reduced at least 73%, indicating that the site of clomazone action must be after MEV. Sequestration of clomazone away from the chloroplast cannot account for soybean tolerance to clomazone since chloroplasts isolated from both cell lines incubated with [14C]clomazone contained a similar amount of radioactivity (disintegrations per minute per microgram of Chl). The possible site(s) of clomazone inhibition include mevalonate kinase, phosphomevalonate kinase, pyrophosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, and/or a prenyl transferase.  相似文献   

13.
The effects of increased salinity [NaCl + CaCl2] on seedlings of five accessions of pearl millet grown for 2 and 7 weeks, respectively, in salinised solution cultures at EC 0.6, 4, 8, 12, 16, and 20 ds m−1 and sand cultures at EC 0.6 and 20 were assessed. There were no consistent relationships between seedlings characters at two and seven weeks in response to increased salinity, and no single character provided an acceptable means of differentiating cultivar/line response. The line having lower shoot mortality had a high root weight, a shoot:root ratio approaching 1, the greatest shoot water content, and the greatest plant height. No relationship was found between these whole-plant characters which suggest greater salinity tolerance, and the pattern of ion distribution, particularly Na+ and Cl. Sufficient inter-cultivar/line variation in response to salinity was found to suggest that selection of individuals with increased salinity tolerance is possible within pearl millet.  相似文献   

14.
The levels of cysteine (Cys), γ-glutamylcysteine (γEC), and glutathione (GSH) were measured in the endosperms, scutella, roots, and shoots of maize (Zea mays L.) seedlings. GSH was the major thiol in roots, shoots, and scutella, Cys predominated in endosperms. The endosperm, scutellum, and functional phloem translocation were required for maintenance of GSH pools in roots and shoots of 6-day-old seedlings. Exposure of roots to 3 micromolar Cd, besides causing a decline in GSH, caused an accumulation of γEC, as if the activity of GSH synthetase was reduced in vivo. [35S]Cys injected into endosperms of seedlings was partly metabolized to [35S]sulfate. The scutella absorbed both [35S]sulfate and [35S]Cys and transformed 68 to 87% of the radioactivity into [35S]GSH. [35S]GSH was translocated to roots and shoots in proportion to the tissue fresh weight. Taken together, the data supported the hypothesis that Cys from the endosperm is absorbed by the scutellum and used to synthesize GSH for transfer through the phloem to the root and shoot. The estimated flux of GSH to the roots was 35 to 60 nanomoles per gram per hour, which totally accounted for the small gain in GSH in roots between days 6 and 7. For Cd-treated roots the GSH influx was similar, yet the GSH pool did not recover to control levels within 24 hours. The estimated flux of GSH to the entire shoot was like that to the roots; however, it was low (11-13 nanomoles per gram per hour) to the first leaf and high (76-135 nanomoles per gram per hour) to the second and younger leaves.  相似文献   

15.
Knowledge of the mechanistic basis of differential aluminum (Al) tolerance depends, in part, on an improved ability to quantify Al located in the apoplastic and symplastic compartments of the root apex. Using root tips excised from seedlings of an Al-tolerant wheat cultivar (Triticum aestivum L. cv Yecora Rojo) grown in Al solutions for 2 d, we established an operationally defined apoplastic Al fraction determined with six sequential 30-min washes using 5 mm CaCl2 (pH 4.3). Soluble symplastic Al was eluted by freezing root tips to rupture cell membranes and performing four additional 30-min CaCl2 washes, and a residual fraction was determined via digestion of root tips with HNO3. The three fractions were then determined in Yecora Rojo and a sensitive wheat cultivar (Tyler) grown at 18, 55, or 140 μm total solution Al (AlT). When grown at equal AlT, Tyler contained more Al than Yecora Rojo in all fractions, but both total Al and fractional distribution were similar in the two cultivars grown at AlT levels effecting a 50% reduction in root growth. Residual Al was consistently 50 to 70% of the total, and its location was elucidated by staining root tips with the fluorophore morin and examining them using fluorescence and confocal laser scanning microscopy. Wall-associated Al was only observed in tips prior to any washing, and the residual fraction was manifested as distinct staining of the cytoplasm and nucleus but not of the apoplastic space. Accordingly, the residual fraction was allocated to the symplastic compartment for both cultivars, and recalculated apoplastic Al was consistently approximately 30 to 40% of the total. Distributions of Al in the two cultivars did not support a symplastic detoxification hypothesis, but the role of cytoplasmic exclusion remains unsettled.  相似文献   

16.
Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.  相似文献   

17.
The inclusion of sub-lethal amounts ofthe herbicide atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] in the nutrient solution supplied to maize and barley increased the growth of the root and shoot and the uptake of nitrate. The activities of nitrate and nitrite reductases, glutamine synthetase and glutamate synthase were enhanced and the amino acid and nitrate contents of the xylem sap increased. All these effects of atrazine were found only in plants grown with nitrate as the nitrogen source. The uptake of 15NO3? and its incorporation into protein in the root and shoot of maize and barley seedlings was significantly greater in the atrazine treated plants. However, a stimulation in the incorporation of leucine-[14C] into TCA-precipitable protein of detached leaves from 7-day-old barley seedlings was obtained only in the absence of a supply of combined nitrogen either in the culture medium or in the in vitro incubation mixture containing the labelled amino acid.  相似文献   

18.
The objective of this study was to determine whether a series of Kenyan bread wheat cultivars differed in tolerance to aluminum toxicity. Fourteen Kenyan wheat cultivars representing current and former widely grown cultivars of diverse pedigree origin, and two control cultivars, Maringa (Al-tolerant) and Siete Cerros (Al-susceptible), were tested in solution cultures with 0 (control), 148, 593, and 2370 M Al at pH 4.6. Highly significant (p0.01) differences in seedling growth were observed among cultivars for root mass, root length and root tolerance index (RTI). Significant (p0.05) cultivar × treatment interactions were observed for root mass and RTI. All characters were negatively affected by increased Al concentration, with root length and root mass being affected the most. RTI is a commonly used index which measures the relative performance of individual cultivars with and without aluminum stress. High levels of tolerance to Al were identified in the Kenyan cultivars by evaluating RTI with this simple nutrient solution technique. Romany and Kenya Nyumbu had RTI values approaching those of the Al tolerant Brazilian cultivar Maringa, a spring wheat standard that has been used for high Al tolerance.  相似文献   

19.
Adewusi SR 《Plant physiology》1990,94(3):1219-1224
The turnover of dhurrin in green seedlings of Sorghum bicolor (Linn) Moench var Redland x Greenleaf, Sudan 70 has been investigated using glyphosate and pulse-labeling studies with 14C-tyrosine and [14C]shikimic acid. The rate of dhurrin breakdown was 4.8 nanomoles per hour in the shoot and 1.4 nanomoles per hour in the root. The rate of dhurrin accumulation in the shoot of 4- to 5-day-old seedlings was high but decreased with age until at the peak period of dhurrin accumulation, the rates of dhurrin synthesis and breakdown were equal. Using a first order equation (an approximation) the rate of dhurrin synthesis (which equals accumulation plus breakdown rates) was 17.4 nanomoles per hour in the shoot and 4.1 nanomoles per hour in the root. In both tissues, the breakdown rate was between 27 and 34% of their synthetic capacity within the experimental period. Dhurrin synthesis in green sorghum seedlings occurred in both the light and dark photoperiods but was faster in the dark period. The result is discussed in relation to the possible metabolic roles of the turnover.  相似文献   

20.
Twenty winter cultivars of Triticum aestivum L. (wheat) were grown in solution culture with and without aluminum (Al) (74 μM, 2.0 mg L-1) for 14 days. Exposure to Al increased root growth of the most tolerant cultivar, while both root and shoot growth were depressed in all other cultivars. On the basis of a root tolerance index (RTI = weight of roots grown with Al/weight of roots grown without Al), cultivar tolerance to Al ranged 9-fold, from 0.13 ± 0.01 to 1.16 ± 0.10. Symptoms of Al toxicity were most evident on roots. Aluminum-affected roots were relatively short and thick and had numerous undeveloped laterals. Leaves of some cultivars showed chlorosis resembling iron deficiency, and others showed purple stems typical of phosphate deficiency. Plants of all cultivars grown with and without Al depressed the pH of nutrient solutions, presumably until NH4+ was depleted, at which point the pH increased. Cultivar tolerance, expressed both as the root tolerance index and a shoot tolerance index, was negatively correlated with the negative log of the mean hydrogen ion (H+) concentration, the minimum pH, and the slope of the pH decline, each calculated from pH data collected during the first 9 days of the experimental period before any sharp rises in pH occurred. These results are consistent with the hypothesis that the Al tolerance of a given cultivar is a function of its ability to resist acidification of the nutrient solution and hence to limit the solubility and toxicity of Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号