首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

2.
Machiah DK  Gowda TV 《Biochimie》2006,88(6):701-710
A post-synaptic neurotoxic phospholipase A(2) (PLA(2)) has been purified from Indian cobra Naja naja venom. It was associated with a peptide in the venom. The association was disrupted using 8 M urea. It is denoted to be a basic protein by its behavior on both ion exchange chromatography and electrophoresis. It is toxic to mice, LD(50) 1.9 mg/kg body weight (ip). It is proved to be post-synaptic PLA(2) by chymographic experiment using frog nerve-muscle preparation. A glycoprotein, (WSG) was isolated from a folk medicinal plant Withania somnifera. The WSG inhibited the phospholipase A(2) activity of NN-XIa-PLA(2,) isolated from the cobra venom, completely at a mole-to-mole ratio of 1:2 (NN-XIa-PLA(2): WSG) but failed to neutralize the toxicity of the molecule. However, it reduced the toxicity as well as prolonged the death time of the experimental mice approximately 10 times when compared to venom alone. The WSG also inhibited several other PLA(2) isoforms from the venom to varying extent. The interaction of the WSG with the PLA(2) is confirmed by fluorescence quenching and gel-permeation chromatography. Chemical modification of the active histidine residue of PLA(2) using p-brophenacyl bromide resulted in the loss of both catalytic activity as well as neurotoxicity of the molecule. These findings suggest that the venom PLA(2) has multiple sites on it; perhaps some of them are overlapping. Application of the plant extract on snakebite wound confirms the medicinal value associated with the plant.  相似文献   

3.
A protein, which neutralizes the enzymatic, toxic, and pharmacological activities of various basic and acidic phospholipases A(2) from the venoms of Bothrops moojeni, Bothrops pirajai, and Bothrops jararacussu, was isolated from B. moojeni snake plasma by affinity chromatography using immobilized myotoxins on Sepharose gel. Biochemical characterization of this myotoxin inhibitor protein (BmjMIP) showed it to be an oligomeric glycoprotein with a M(r) of 23,000-25,000 for the monomeric subunit. BmjMIP was stable in the pH range from 4.0 to 12.0, between 4 and 80 degrees C, even after deglycosylation. The role of the carbohydrate moiety was investigated and found not to affect the in vitro function of the inhibitor. The corresponding 500bp cDNA obtained by RT-PCR from the liver of the snake encodes a mature protein of 166 amino acid residues including a 19 amino acid signal peptide. The primary structure of BmjMIP showed a high similarity with other snake phospholipase A(2) inhibitors (PLIs) in which the carbohydrate recognition domain (CRD) and the glycosylation site (Asn103) are conserved. Circular dichroism spectroscopy indicated that no significant alterations in the secondary structure of either the BmjMIP or the target protein occur upon their interaction. BmjMIP has a wide range of inhibitory properties against basic and acidic PLA(2)s from Bothrops venoms (anti-enzymatic, anti-myotoxic, anti-edema inducing, anti-cytotoxic, anti-bactericidal, and anti-lethal). However, the inhibitor showed a reduced ability to neutralize the biological activities of crotoxin B (CB), the PLA(2) homologue associated with crotapotin in Crotalus durissus terrificus snake venom. Finally, the purified PLA(2) inhibitor was shown to protect in vivo against the toxic and pharmacological effects of a homologous PLA(2) enzyme, suggesting that PLIs or a corresponding derived peptide may prove useful in the treatment of snakebite victims or, more importantly, in the treatment of the many human diseases in which these enzymes have been implicated.  相似文献   

4.
Lonomia obliqua caterpillar bristle extract induces both direct and indirect hemolytic activity on human and rat washed erythrocytes, and provokes intravascular hemolysis in Wistar rats. Indirect hemolytic activity is assumed to be caused by a phospholipase A(2) (PLA(2)) present in this extract, and this investigation was initiated in order to characterize this enzyme. Phospholipase A(2) activity of crude extract was inhibited by both a PLA(2)-specific inhibitor (pBpb) and the metal ion chelator EDTA. L. obliqua PLA(2) was purified by liquid chromatography from the crude bristle extract and had a molecular mass of 15kDa and a pI of 5.9; its N-terminal sequence showed high homology to a sequence of a putative PLA(2) obtained from a cDNA library of L. obliqua bristles, and it is tentatively placed among Group III phospholipases A(2). This enzyme was stable at 4 degrees C, sensitive to higher temperatures, and its maximum catalytic activity was at pH 8.0. L. obliqua PLA(2) induced hemolysis only when incubated with exogenous lecithin. Thus, the PLA(2) purified herein appears to be responsible for the indirect hemolytic activity of the crude bristle extract.  相似文献   

5.
A marine snail digestive phospholipase A2 (mSDPL) was purified from delipidated hepatopancreas. Unlike known digestive phospholipases A2, which are 14 kDa proteins, the purified mSDPL has a molecular mass of about 30 kDa. It has a specific activity of about 180 U/mg measured at 50 °C and pH 8.5 using phosphatidylcholine liposomes as a substrate in the presence of 4 mM NaTDC and 6 mM CaCl2. The N-terminal amino-acid of the purified mSDPL does not share any homology with known phospholipases.Moreover, the mSDPL exhibits hemolytic activity in intact erythrocytes and can penetrate phospholipid monolayers at high surface pressure, comparable to snake venom PLA2. These observations suggest that mSDPL could be toxic to mammal cells. However, mSDPL can be classified as a member of a new family of enzymes. It should be situated between the class of toxic phospholipase A2 from venoms and another class of non toxic pancreatic phospholipase A2 from mammals.  相似文献   

6.
Summary Phospholipase A2 (PLA2) produced slow dose dependent relaxation in intact and endothelium-deprived precontracted rabbit aortic strips. In endothelium-deprived preparations, relaxation induced by PLA2 is inhibited by hemoglobin, methylene blue and parabromophenacylbromide (PBPB), and is potentiated by superoxide dismutase (SOD). Indomethacin has no effect. Relaxation is accompanied by a rise in c-GMP. Phospholipase C causes a significant increase in tension, while Phospholipase D has no effects. In intact aortic strips PLA2 causes a biphasic response with no elevation in c-GMP. The results indicate several common features of the PLA2 released factor with endothelium-derived relaxing factor (EDRF). However PLA2 induced relaxation is not dependent on endothelial cells. Apparently in addition to nitric oxide which may be the endothelium-derived relaxing factor, a second smooth muscle relaxing factor exists which is initiated by PLA2 and is independent of endothelium. The production of the PLA2 produced relaxation is dependent on its specific hydrolytic activity. We call this relaxing factor the phospholipid-derived relaxing factor (PDRF).  相似文献   

7.
Natural inhibitors occupy an important place in the potential to neutralize the toxic effects caused by snake venom proteins and enzymes. It has been well recognized for several years that animal sera, some of the plant and marine extracts are the most potent in neutralizing snake venom phospholipase A(2) (svPLA(2)). The implication of this review to update the latest research work which has been accomplished with svPLA(2) inhibitors from various natural sources like animal, marine organisms presents a compilation of research in this field over the past decade and revisiting the previous research report including those found in plants. In addition to that the bioactive compounds/inhibitor molecules from diverse sources like aristolochic alkaloid, flavonoids and neoflavonoids from plants, hydrocarbones -2, 4 dimethyl hexane, 2 methylnonane, and 2, 6 dimethyl heptane obtained from traditional medicinal plants Tragia involucrata (Euphorbiaceae) member of natural products involved for the inhibitory potential of phospholipase A(2) (PLA(2)) enzymes in vitro and also decrease both oedema induced by snake venom as well as human synovial fluid PLA(2). Besides marine natural products that inhibit PLA(2) are manoalide and its derivatives such as scalaradial and related compounds, pseudopterosins and vidalols, tetracylne from synthetic chemicals etc. There is an overview of the role of PLA(2) in inflammation that provides a rationale for seeking inhibitors of PLA(2) as anti-inflammatory agents. However, more studies should be considered to evaluate antivenom efficiency of sera and other agents against a variety of snake venoms found in various parts of the world. The implications of these new groups of svPLA(2) toxin inhibitors in the context of our current understanding of snake biology as well as in the development of new novel antivenoms therapeutics agents in the efficient treatment of snake envenomations are discussed.  相似文献   

8.
The goal of the present study is to elucidate the effect of sphingomyelin on interfacial binding of Taiwan cobra phospholipase A2 (PLA2). Substitution of Asn-1 with Met caused a reduction in enzymatic activity and membrane-damaging activity of PLA2 toward phospholipid vesicles, while sphingomyelin exerted an inhibitory effect on the biological activities of native and mutated PLA2. Incorporation of sphingomyelin reduced membrane fluidity of phospholipid vesicles as evidenced by Laurdan fluorescence measurement. The results of self-quenching studies, binding of fluorescent probe, trinitrophenylation of Lys residues and fluorescence energy transfer between protein and lipid revealed that sphingomyelin altered differently membrane-bound mode of native and mutated PLA2. Moreover, it was found that PLA2 and N-terminally mutated PLA2 adopted different conformation and geometrical arrangement on binding with membrane bilayer. Nevertheless, the binding affinity of PLA2 and N-terminal mutant for phospholipid vesicles was not greatly affected by sphingomyelin. Together with the finding that mutation on N-terminus altered the gross conformation of PLA2, our data indicate that sphingomyelin modulates the mode of membrane binding of PLA2 at water/lipid interface, and suggest that the modulated effect of sphingomyelin depends on inherent structural elements of PLA2.  相似文献   

9.
Summary The amino acid sequences of 40 secreted phospholipase A2's (PLA2) were aligned and a phylogenetic tree derived that has three main branches corresponding to elapid (group I), viperid (group II), and insect venom types of PLA2. The human pancreatic and recently determined nonpancreatic sequences in the comparison align with the elapid and viperid categories, repectively, indicating that at least two PLA2 genes existed in the vertebrate line before the divergence of reptiles and mammals about 200–300 million years ago. This allows resolution for the first time of major genetic events in the evolution of current PLA2's and the relationship of human PLA2's to those of snake venom, many of which are potent toxins. Implications for possible mechanisms of regulation of mammalian intra- and extracellular PLA2's are discussed, as well as issues relating to the search for the controlling enzymes in arachidonic acid release, prostaglandin generation, and signal transduction.  相似文献   

10.
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.  相似文献   

11.
Wei JF  Li T  Wei XL  Sun QY  Yang FM  Chen QY  Wang WY  Xiong YL  He SH 《Biochimie》2006,88(10):1331-1342
Group IIA phospholipase A(2) (PLA(2)) are major components in Viperidae/Crotalidae venom. In the present study, a novel PLA(2) named promutoxin with Arg at the site 49 has been purified from the venom of Protobothrops mucrosquamatus by chromatography. It consists of 122 amino acid residues with a molecular mass of 13,656 Da assessed by MALDI-TOF. It has the structural features of snake venom group IIA PLA(2)s, but has no PLA(2) enzymatic activity. Promutoxin shows higher amino acid sequence identity to the K49 PLA(2)s (72-95%) than to D49 PLA(2)s (52-58%). Promutoxin exhibits potent myotoxicity in the animal model with as little as 1 microg of promutoxin causing myonecrosis and myoedema in the gastrocnemius muscle of mice. Promutoxin is also able to stimulate the release of IL-12, TNFalpha, IL-6 and IL-1beta from human monocytes, and induce IL-2, TNFalpha and IL-6 release from T cells, indicating that this snake venom group IIA PLA(2) is actively involved in the inflammatory process in man caused by snake venom poisoning.  相似文献   

12.
A novel serum protein inhibiting specifically the enzymatic activity of the basic phospholipase A(2) (PLA(2)) from the venom of the Chinese mamushi snake (Agkistrodon blomhoffii siniticus) was purified from a nonvenomous Colubridae snake, Elaphe quadrivirgata. The purified inhibitor was a 150-kDa glycoprotein having a trimeric structure, composed of two homologous 50-kDa subunits. Their amino acid sequences, containing leucine-rich repeats, were typical of the beta-type PLA(2) inhibitor (PLIbeta), previously identified from the serum of A. blomhoffii siniticus. The inhibitor inhibited exclusively group II basic PLA(2)s and did not inhibit other kinds of PLA(2)s. This is the first paper reporting the existence of PLIbeta in a nonvenomous snake. The existence of PLIbeta in the nonvenomous snake reflects that PLIbetas are widely distributed over the snake species and participate commonly in regulating the physiological activities of the unidentified target PLA(2)s.  相似文献   

13.
Previous work in our laboratory described the in vitro killing of Borrelia burgdorferi when co-cultured with saliva from adult Amblyomma americanum. Borreliacidal activity was not evident using Ixodes scapularis saliva. Mixing trypsin with saliva eliminated the borreliacidal activity of A. americanum saliva, while incorporating a trypsin inhibitor restored all borreliacidal activity, indicating this factor was of protein or peptide origin. One-dimensional PAGE indicated at least 7 major protein differences between I. scapularis and A. americanum saliva. To determine the borreliacidal factor, A. americanum saliva was fractionated by gel filtration and subsequent killing of B. burgdorferi was associated with a single fraction. Two-dimensional gel analysis indicated protein and/or peptide(s) in borreliacidal fractions running between 38 and 64 kDa. Finally, admixing saliva with the phospholipase A2 inhibitor oleyloxyethyl phosphorylcholine completely eliminated the ability of A. americanum saliva to kill B. burgdorferi. These studies indicate the borreliacidal activity found in A. americanum saliva is likely due to phospholipase A2 enzymatic activity.  相似文献   

14.
Disulfide bonds are known to be crucial for protein stability. To probe the contribution of each of the five disulfide bonds (C9-C31, C30-C70, C37-C63, C61-C95, and C105-C113) in bee venom phospholipase A2 to stability, variants with deleted disulfide bonds were produced by substituting two serine residues for each pair of cysteine residues. The mutations started from the pseudo-wild-type variant (pWT) with the mutation I1A (Markert et al., Biotechnol. Bioeng. 98 (2007) 48-59). All variants were expressed in Escherichia coli, refolded from inclusion bodies and purified as pWT. The activity of the variants ranged from 12 to 82% of pWT. From the transition curves of guanidine hydrochloride-induced unfolding, the contributions of the individual disulfide bonds to conformational stability were estimated. They increased in the sequence C9-C31 < C105-C113 < C30-C70 ≈ C37-C63 < C61-C95. For two disulfide bonds (C9-C31, C105-C113) the effects were confirmed on additionally produced variants with the substitution of cysteine by alanine. Despite distinct differences in stability, all variants showed similar cooperativity in unfolding. Selected variants were also probed for proteolytic stability toward thermolysin. The removal of disulfide bonds increased the proteolytic susceptibility of the native proteins in the same way as the stability decreased. From the comparison of the results with literature data on phospholipase A2 from bovine pancreas possessing seven disulfide bonds, it was concluded that conserved disulfide bonds in homologous proteins fulfill related functions in conformational stability.  相似文献   

15.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

16.
Several snake species possess endogenous phospholipase A2 inhibitors (sbPLIs) in their blood plasma, the primary role of which is protection against an eventual presence of toxic phospholipase A2 (PLA2) from their venom glands in the circulation. These inhibitors have an oligomeric structure of, at least, three subunits and have been categorized into three classes (α, β and γ) based on their structural features. SbγPLIs have been further subdivided into two subclasses according to their hetero or homomeric nature, respectively. Despite the considerable number of sbγPLIs described, their structures and mechanisms of action are still not fully understood. In the present study, we focused on the native structure of CNF, a homomeric sbγPLI from Crotalus durissus terrificus, the South American rattlesnake. Based on the results of different biochemical and biophysical experiments, we concluded that, while the native inhibitor occurs as a mixture of oligomers, tetrameric arrangement appears to be the predominant quaternary structure. The inhibitory activity of CNF is most likely associated with this oligomeric conformation. In addition, we suggest that the CNF tetramer has a spherical shape and that tyrosinyl residues could play an important role in the oligomerization. The carbohydrate moiety, which is present in most sbγPLIs, is not essential for the inhibitory activity, oligomerization or complex formation of the CNF with the target PLA2. A minor component, comprising no more than 16% of the sample, was identified in the CNF preparations. The amino-terminal sequence of that component is similar to the B subunits of the heteromeric sbγPLIs; however, the role played by such molecule in the functionality of the CNF, if any, remains to be determined.  相似文献   

17.
Phagocytosis is a hemocytic behavior against bacterial infection. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits immune responses of target insects and causes hemolymph septicemia. This study analyzed how X. nematophila could inhibit phagocytosis to increase its pathogenicity. Granular cells and plasmatocytes were the main phagocytic hemocytes of Spodoptera exigua determined by observing fluorescence-labeled bacteria in the cytosol. X. nematophila significantly inhibited phagocytosis of both hemocytes, while heat-killed X. nematophila lost its inhibitory potency. However, co-injection of X. nematophila with arachidonic acid did not show any significant inhibition of hemocyte phagocytosis. In fact, hemocytes of S. exigua infected with X. nematophila showed significant reduction in phospholipase A(2) (PLA(2)) activity. Dexamethasone, a specific PLA(2) inhibitor, significantly inhibited phagocytosis of both cell types. However, the inhibitory effect of dexamethasone was recovered by addition of arachidonic acid. Incubation of hemocytes with benzylideneacetone, a metabolite of X. nematophila, inhibited phagocytosis in a dose-dependent manner. These results suggest that X. nematophila produces and secretes PLA(2) inhibitor(s), which in turn inhibit the phagocytic response of hemocytes.  相似文献   

18.
An open reading frame of the hyperthermophilic archaeon Aeropyrum pernix K1 APE2325, which composed of 474 bases, was cloned and expressed in Escherichia coli BL21 (DE3) Codon Plus-RIL. The recombinant protein was purified by Ni-chelation affinity chromatography. It showed a single band with a molecular mass of 18kDa in SDS-PAGE. The purified enzyme exhibited both phospholipase A(2) and esterase activities with the optimal catalytic temperature at 90 degrees C. The enzyme activity was Ca(2+)-independent. Kinetic analysis revealed its Km, k cat, and Vm for the p-nitrophenyl propionate substrate were 103microM, 39s(-1), and 249micromol/min/mg, respectively. The recombinant protein was thermostable and its half-life at 100 degrees C was about 1h.  相似文献   

19.
A phospholipase A2 was isolated from the snake venom of Chinese Agkistrodon blomhoffii Ussurensis by column chromatography using DEAE Sephadex A-50 ion-exchange chromatography, Sephadex G-75 gel filtration chromatography and Mono Q ion-exchange chromatography, and designated as Akbu-PLA2. It showed an average molecular mass of 13,980 ± 3 amu determined by MALDI TOF mass spectrometry. Protein identification results from HPLC-nESI-MS/MS analysis indicated that the Akbu-PLA2 was a new snake venom acidic PLA2. Seven peptides were sequenced from Akbu-PLA2 by HPLC-nESI-MS/MS analysis. Sequencing alignment indicated that Akbu-PLA2 shared homolog peptides of phospholipases A2 from the venoms of Gloydius ussurensis, Gloydius halys, Gloydius halys (halys viper), Deinagkistrodon acutus and Agkistrodon halys Pallas. Akbu-PLA2 has an optimum hydrolytic activity temperature of ∼45 °C. The intrinsic fluorescences of Tyr and Trp residues of Akbu-PLA2 showed emission wavelengths red-shifted by 13.6 and 1.6 nm from those of free Tyr and Trp, respectively. Akbu-PLA2 was shown to contain one Ca2+ per monomer by ICP-AES measurement. The Ca2+ ion was found to be critical for both the hydrolytic activity and the structure of Akbu-PLA2. Ca2+ increased the emission fluorescence intensity and the hydrophobicity of the environment of Akbu-PLA2. The hydrolytic activity of Akbu-PLA2 was accelerated due to the addition of Ca2+ ion by enhancing the substrate binding. However, a protein component with the molecular weight two-fold relative to that of Akbu-PLA2 was found to be difficult to eliminate for the purification of Akbu-PLA2. HPLC-nESI-MS/MS detected the same peptides from it as from Abku-PLA2, which indicated that it should be a homodimer of Akbu-PLA2. A proteomic approach, 2D SDS-PAGE coupled to HPLC-nESI-MS/MS, supported the co-existence of the Akbu-PLA2 monomer and dimer in the crude snake venom. Results from the combination of phosphoprotein and glycoprotein specific stains combined with the HPLC-nESI-MS/MS method indicated that both the Akbu-PLA2 monomer and dimer were both phosphorylated and glycosylated. The addition of exogenous Ca2+ ion was found to be able to promote the dimer formation of Akbu-PLA2. We conclude that a novel PLA2 was successfully obtained. The systemically biochemical, proteomic, structural and functional characterization results from Akbu-PLA2 reveal new threads and provide valuable inputs for the study of snake venom phospholipases A2.  相似文献   

20.
The effects of morin and nordihydroguaiaretic acid (NDGA), two plant secondary metabolites, on porcine pancreatic phospholipase A2 (PLA2) were investigated by isothermal titration calorimetry (ITC) and in silico docking analyses. The binding energies obtained for NDGA and morin from the ITC studies are ? 6.36 and ? 5.91 kcal mol? 1, respectively. Similarly, the glide scores obtained for NDGA and morin towards PLA2 were ? 7.32 and ? 7.23 kcal mol? 1, respectively. Further the docked complexes were subjected to MD simulation in the presence of explicit water molecules to check the binding stability of the ligands in the active site of PLA2. The bound ligands make hydrogen bonds with the active site residues of the enzyme and coordinate bonds with catalytically important Ca2+ ion. The binding of ligands at the active site of PLA2 may also contribute to the reported anti-inflammatory properties of NDGA and morin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号