首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The lipid-containing bacteriophage phi 6 has a genome composed of three segments of double-stranded RNA. We determined the nucleotide sequence of a cDNA copy of the smallest RNA segment. The coding sequences of the four proteins on this segment were identified. These sequences were clustered. Three of the genes had overlapping initiation-termination codons. All noncoding sequences were at the ends of the molecule. The genes of the small double-stranded RNA segment comprised two translational polarity groups. We propose that the translational coupling is the result of an inability of ribosomes to bind independently to two of the four genes. Translation of these genes occurred when ribosomes were delivered to them by translation of an upstream gene.  相似文献   

2.
3.
4.
Bacteriophage phi 6 contains three segments of double-stranded RNA. The procapsid consists of proteins P1, P2, P4, and P7, which are encoded by the viral L segment. cDNA copies of this segment have been cloned into plasmids that direct the production of these proteins, which assemble into polyhedral procapsids. These procapsids are capable of packaging plus-sense phi 6 RNA in the presence of nucleoside triphosphate and synthesizing the complementary minus strand to form double-stranded RNA. In this article, we report the presence of a nucleotide-binding site in protein P4. The viral procapsid and nucleocapsid exhibit a nucleoside triphosphate phosphohydrolase activity that converts nucleoside triphosphates into nucleoside diphosphates.  相似文献   

5.
6.
7.
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.  相似文献   

8.
9.
10.
Eight different bacteriophages were isolated from leaves of Pisum sativum, Phaseolus vulgaris, Lycopersicon esculentum, Daucus carota sativum, Raphanus sativum, and Ocimum basilicum. All contain three segments of double-stranded RNA and have genomic-segment sizes that are similar but not identical to those of previously described bacteriophage phi6. All appear to have lipid-containing membranes. The base sequences of some of the viruses are very similar but not identical to those of phi6. Three of the viruses have little or no base sequence identity to phi6. Two of the viruses, phi8 and phi12, contain proteins with a size distribution very different from that of phi6 and do not package genomic segments of phi6. Whereas phi6 attaches to host cells by means of a pilus, several of the new isolates attach directly to the outer membrane. Although the normal hosts of these viruses seem to be pseudomonads, those viruses that attach directly to the outer membrane can establish carrier states in Escherichia coli or Salmonella typhimurium. One of the isolates, phi8, can form plaques on heptoseless strains of S. typhimurium.  相似文献   

11.
12.
13.
The two segments of double-stranded RNA from infectious pancreatic necrosis virus Sp were cloned into the plasmid vector pUC8. Two sets of overlapping clones were identified by restriction enzyme and Southern blot analyses. Each of these sets was shown by Northern blot analysis to be exclusively related to either segment A or B of the genomic RNA. The entire lengths of the cloned segments were estimated to be 2.9 and 2.6 kilobases, respectively. Sequences from the two segments of viral cDNA were subcloned into the bacteriophage T7 RNA polymerase vectors pT71 and pT72. The activity of the single-stranded RNAs transcribed from these subclones in a rabbit reticulocyte lysate translation system provided information on the polarity of and the protein products coded for by each subclone. The four proteins encoded by the genome of infectious pancreatic necrosis virus were identified among the translation products of the individual cloned segments by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By constructing plasmids containing deletions in the sequences from either the 5' or 3' end of segment A, we were able to construct a physical map for the larger segment of double-stranded RNA. The proteins derived from these plasmids indicated that the linear gene order for viral proteins encoded in segment A is beta, gamma 2, and gamma 1.  相似文献   

14.
C D Rao  A Kiuchi    P Roy 《Journal of virology》1983,46(2):378-383
The 3'-terminal sequences of the 10 double-stranded RNA genome segments of bluetongue virus (serotypes 10 and 11) were determined. The double-stranded RNAs were 3' labeled with [5'-32P]pCp and resolved into 10 segments by electrophoresis. After denaturation, the two complementary strands of segments 4 through 10 were resolved into fast- and slow-migrating species by polyacrylamide gel electrophoresis, and their 3' end sequences were determined. Complete RNase T1 digestion of the individual 3'-labeled double-stranded RNA segments yielded two labeled oligonucleotides, one of which migrated faster than the other on 20% polyacrylamide-7 M urea gels. Sequence analyses of the two oligonucleotides of segments 4 through 10 confirmed the corresponding RNA sequence data. For RNA segments 1 through 3 the oligonucleotide analyses gave comparable results. The 3'-terminal sequences of the fast-migrating RNA species were HOCAAUUU. . . ; those of the slow-migrating RNA species were HOCAUUCACA. . . . Similar results were obtained for double-stranded RNA from bluetongue virus serotypes 10 and 11. Beyond the common termini, the sequences for each segment varied considerably.  相似文献   

15.
16.
Iridoviruses (IV) are nuclear cytoplasmic large DNA viruses that are receiving increasing attention as sublethal pathogens of a range of insects. Invertebrate iridovirus type 9 (IIV-9; Wiseana iridovirus) is a member of the major phylogenetic group of iridoviruses for which there is very limited genomic and proteomic information. The genome is 205,791 bp, has a G+C content of 31%, and contains 191 predicted genes, with approximately 20% of its repeat sequences being located predominantly within coding regions. The repeated sequences include 11 proteins with helix-turn-helix motifs and genes encoding related tandem repeat amino acid sequences. Of the 191 proteins encoded by IIV-9, 108 are most closely related to orthologs in IIV-3 (Chloriridovirus genus), and 114 of the 126 IIV-3 genes have orthologs in IIV-9. In contrast, only 97 of 211 IIV-6 genes have orthologs in IIV-9. There is almost no conservation of gene order between IIV-3, IIV-6, and IIV-9. Phylogenetic analysis using a concatenated sequence of 26 core IV genes confirms that IIV-3 is more closely related to IIV-9 than to IIV-6, despite being from a different genus of the Iridoviridae. An interaction between IIV and small RNA regulatory systems is supported by the prediction of seven putative microRNA (miRNA) sequences combined with XRN exonuclease, RNase III, and double-stranded RNA binding activities encoded on the genome. Proteomic analysis of IIV-9 identified 64 proteins in the virus particle and, when combined with infected cell analysis, confirmed the expression of 94 viral proteins. This study provides the first full-genome and consequent proteomic analysis of group II IIV.  相似文献   

17.
Protein P4, an early protein of double-stranded RNA bacteriophage phi 6, is a component of the virion-associated RNA polymerase complex and possesses a nucleoside triphosphate (NTP) phosphohydrolase activity. We have produced and characterized a panel of 20 P4-specific monoclonal antibodies. Epitope mapping using truncated molecules of recombinant P4 revealed seven linear epitopes. The accessibility of the epitopes on the phi 6 nucleocapsid (NC) surface showed that at least the C terminus and an internal domain, containing the consensus sequence for NTP binding, protrude the NC shell. Four of the NC-binding antibodies distorted the integrity of the NC by releasing protein P4 and the major NC surface protein P8. This finding suggests a close contact between these two proteins. The dissociation of the NC led to the activation of the virion-associated RNA polymerase. The multimeric status of the recombinant P4 was similar to that of the virion-associated P4, indicating that no accessory virus proteins are needed for its multimerization.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号