首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformation wheels, directly relating to amino acid sequence to the local torsion angles in a protein molecule, are presented for cytochromes c, c2, c550, and c551 and for lysozymes from hen egg-white and T4 bacteriophage. The circular plots for the cytochrome molecules aid in visualizing the common three-dimensional folding ("cytochrome fold") observed in this family of proteins. Conformation wheels for lysozymes from two different species reveal the characteristic differences in their folding patterns. These novel plots are also useful in storing and comparing the several sets of crystallographic data reported for lysozyme.  相似文献   

2.
The effects of chemical modifications of Trp62 and Trp108 on the folding of hen egg-white lysozyme from the reduced form were investigated by means of the sulfhydryl-disulfide interchange reaction at pH 8 and 40 degrees C. The folding of reduced lysozyme was monitored by following the recovery of the original activity. Under the conditions employed, the apparent first-order rate constant for the folding of reduced lysozyme was not changed by the modifications of both Trp62 and Trp108 and the folding was completed within 30 min. However, the extent of the correct folding was changed by the modification of Trp62 but not by that of Trp108. Native and oxindolealanine108 lysozymes recovered 80 and 81% of their original activities after 30-min refolding, respectively, but Trp62-modified lysozymes recovered their activities to a lesser extent than native and oxindolealanine108 lysozymes. The recovered activities of Trp62-modified lysozymes after 30-min refolding were 63% for oxindolealanine62 lysozyme, 65% for delta 1-carboxamidomethylthiotryptophan62 lysozyme, and 52% for delta 1-carboxymethylthiotryptophan62 lysozyme. These results suggest that Trp62 is important for preventing the misfolding of reduced lysozyme, but that neither Trp62 nor Trp108 is involved in the rate-determining step (the slowest step) in the folding pathway. A decrease in the hydrophobic nature of Trp62 seems to increase the misfolding and thus to decrease the extent of the correct folding of reduced lysozyme. A mechanism for the involvement of Trp62 in the folding pathway of reduced lysozyme is proposed.  相似文献   

3.
Ichimaru T  Kikuchi T 《Proteins》2003,51(4):515-530
It is a general notion that proteins with very similar three-dimensional structures would show very similar folding kinetics. However, recent studies reveal that the folding kinetic properties of some proteins contradict this thought (i.e., the members in a same protein family fold through different pathways). For example, it has been reported that some beta-proteins in the intracellular lipid-binding protein family fold through quite different pathways (Burns et al., Proteins 1998;33:107-118). Similar differences in folding kinetics are also observed in the members of the globin family (Nishimura et al., Nat Struct Biol 2000;7:679-686). In our study, we examine the possibility of predicting qualitative differences in folding kinetics of the intracellular lipid-binding proteins and two globin proteins (i.e., myoglobin and leghemoglobin). The problem is tackled by means of a contact map based on the average distance statistics between residues, the Average Distance Map (ADM), as constructed from sequence. The ADMs for the three proteins show overall similarity, but some local differences among maps are also observed. Our results demonstrate that some properties of the protein folding kinetics are consistent with local differences in the ADMs. We also discuss the general possibility of predicting folding kinetics from sequence information.  相似文献   

4.
Hydropathic profiles obtained from the amino acid sequences of 8 alpha-lactalbumins were averaged and compared to the average profile deduced from the primary structure of 21 type c lysozymes. This analysis was performed in order to detect differences between both types of molecules, since it could explain their different functional properties. The application of the method herein described reveals the existence of very significative differences (P less than 0.001) between the amino acid residues located at positions 31-32, 34-35, 37-45, 47-48, 80-85 and 108-113 of alpha-lactalbumins and their homologous in type c lysozymes. These differences are in agreement with the chemical data about the interaction sites of both galactosyltransferase and calcium ions with alpha-lactalbumin, which are not required for the lysozyme function.  相似文献   

5.
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.  相似文献   

6.
Morozova-Roche LA 《FEBS letters》2007,581(14):2587-2592
Calcium-binding equine lysozyme (EL) combines the structural and folding properties of c-type lysozymes and alpha-lactalbumins, connecting these two most studied subfamilies. The structural insight into its native and partially folded states is particularly illuminating in revealing the general principles of protein folding, amyloid formation and its inhibition. Among lysozymes EL forms one of the most stable molten globules and shows the most uncooperative refolding kinetics. Its partially-folded states serve as precursors for calcium-dependent self-assembly into ring-shaped and linear amyloids. The innate amyloid cytotoxicity of the ubiquitous lysozyme highlights the universality of this phenomenon and necessitates stringent measures for its prevention.  相似文献   

7.
The crystal structure of an antibacterial protein of immune origin (TSWAB), purified from tasar silkworm (Antheraea mylitta) larvae after induction by Escherichia coli infection, has been determined. This is the first insect lysozyme structure and represents induced lysozymes of innate immunity. The core structure of TSWAB is similar to c-type lysozymes and alpha-lactalbumins. However, TSWAB shows significant differences with respect to the other two proteins in the exposed loop regions. The catalytic residues in TSWAB are conserved with respect to the chicken lysozyme, indicating a common mechanism of action. However, differences in the noncatalytic residues in the substrate binding groove imply subtle differences in the specificity and the level of activity. Thus, conformational differences between TSWAB and chicken lysozyme exist, whereas functional mechanisms appear to be similar. On the other hand, alpha-lactalbumins and c-type lysozymes exhibit drastically different functions with conserved molecular conformation. It is evident that a common molecular scaffold is exploited in the three enzymes for apparently different physiological roles. It can be inferred on the basis of the structure-function comparison of these three proteins having common phylogenetic origin that the conformational changes in a protein are minimal during rapid evolution as compared with those in the normal course of evolution.  相似文献   

8.
The alpha-lactalbumins and c-type lysozymes have virtually identical structure but exhibit very different folding behavior. All alpha-lactalbumins form a well populated molten globule state, while most of the lysozymes do not. alpha-Lactalbumin consists of two subdomains, and the alpha-subdomain is considerably more structured in the molten globule state than the beta-subdomain. Constructs derived from the alpha-subdomain of human alpha-lactalbumin containing the A, B, D, and 3(10) helices are known to form a molten globule state in the absence of the rest of the protein (Demarest, S. et al. (1999) J. Mol. Biol. 294, 213-221). Here we reported comparative studies of constructs derived from the same regions of canine and equine lysozymes. These proteins form two of the most stable molten globule states among all the lysozymes. A construct containing the A, B, D, and 3(10) helices of equine lysozyme is partially helical but is less structured than the corresponding human alpha-lactalbumin peptide. Addition of the C-helix leads to a construct that is still less structured and less stable than the alpha-lactalbumin construct. The corresponding construct from canine lysozyme is also less structured and less stable than the alpha-lactalbumin peptide. Thus, molten globule formation in human alpha-lactalbumin can be driven by the isolated alpha-subdomain, while more extensive interactions are required to generate a stable molten globule in the two lysozymes. The stability of the canine and equine lysozyme constructs is similar, indicating that the extraordinary stability of the canine lysozyme molten globule is not due to an unusually stable isolated alpha-subdomain.  相似文献   

9.
Amyloid deposits are frequently formed by mutant proteins that have a lower stability than the wild-type proteins. Some reports, however, have shown that mutant-induced thermodynamic destabilization is not always a general mechanism of amyloid formation. To obtain a better understanding of the mechanism of amyloid fibril formation, we show in this study that equilibrium and kinetic refolding-unfolding reaction experiments with two amyloidogenic mutant human lysozymes (I56T and D67H) yield folding pathways that can be drawn as Gibbs energy diagrams. The equilibrium stabilities between the native and denatured states of both mutant proteins were decreased, but the degrees of instability were different. The Gibbs energy diagrams of the folding process reveal that the Gibbs energy change between the native and folding intermediate states was similar for both proteins, and also that the activation Gibbs energy change from the native state to the transition state decreased. Our results confirm that the tendency to favor the intermediate of denaturation facilitates amyloid formation by the mutant human lysozymes more than equilibrium destabilization between the native and completely denatured states does.  相似文献   

10.
We previously demonstrated that the hydrophobic clusters present in hen lysozyme under denaturing conditions were disrupted by the mutation of Trp62 to Gly (W62G). In order to examine the effects of the structure of the denatured state of W62G lysozyme on folding, we analyzed the early events in the folding of reduced W62G lysozyme in detail. From the exchange measurements of disulfide bonds using the variants containing a pair of cysteine residues (1SS), it was found that the formation of disulfide bond in the W62G1SS lysozyme was not accompanied by a prominent interaction between amino acid residues, indicating that the disruption of the hydrophobic core led to the random folding at the early stages in the process of folding of the reduced lysozyme. On the other hand, analyses of the oxidative-renaturation of reduced W62G lysozymes, as well as measurements of the extent of aggregation of the reduced and carboxy amido methylated W62G lysozyme, indicated that the formation of an aggregate is more prominent in the reduced W62G lysozyme than in the reduced wild-type lysozyme. Moreover, a lag phase was detected in the oxidative-renaturation of reduced W62G lysozyme, as based on observations of the recovery of activity. The simulation of the folding process indicated that intermediates were present at the early stages in the folding of the reduced W62G lysozyme. These results suggest that the presence of the intermediates was derived from the random folding at the early stages in the folding process of reduced W62G lysozyme due to the disruption of the structure of the denatured state. Folding thus appears to have been kinetically delayed by these processes, which then led to the significant aggregation of reduced lysozyme. Moreover, from the analysis of amyloid aggregation of the reduced lysozymes, it was suggested that the disruption of the residual structure in denatured state by W62G mutation deterred the formation of the amyloid fibrils of lysozyme.  相似文献   

11.
Estrada E 《Proteins》2004,54(4):727-737
The folding degree index (Estrada, Bioinformatics 2002;18:697-704) is extended to account for the contribution of amino acids to folding. First, the mathematical formalism for extending the folding degree index is presented. Then, the amino acid contributions to folding degree of several proteins are used to analyze its relation to secondary structure. The possibilities of using these contributions in helping or checking the assignation of secondary structure to amino acids are also introduced. The influence of external factors to the amino acids contribution to folding degree is studied through the temperature effect on ribonuclease A. Finally, the analysis of 3D protein similarity through the use of amino acid contributions to folding degree is studied by selecting a series of lysozymes. These results are compared to that obtained by sequence alignment (2D similarity) and 3D superposition of the structures, showing the uniqueness of the current approach.  相似文献   

12.
Hydropathic profiles can be considered as an approach to the three-dimensional structure of a protein and so their use for comparison of homologous proteins is proposed, as they provide information on relative structural conservativeness. A simple approach was developed for comparison of hydropathic profiles and applied to 19 lysozymes c of known primary structure. Trees were constructed in order to discover which method yielded the best estimation of the phenotypic differences between the proteins considered, by means of the goodness-of-fit criterion. Iterative methods, such as the Fitch-and-Margoliash and the unweighted-pair-group methods, gave a better fit than did a non-iterative method. When the hydropathic approach is used for comparison of lysozymes c, the enzyme obtained from chachalaca egg-white is placed closer to those from pheasant-like birds than to those of ducks; this result agrees with the morphological resemblance of the chachalaca to pheasant-like birds. Pigeon egg-white and equine milk lysozymes differ greatly in sequence from other lysozymes c and their hydropathic analysis shows important differences with respect to the other homologous enzymes.  相似文献   

13.
Hen egg white lysozyme and T4 bacteriophage lysozyme have the same catalytic function, but have non-homologous amino acid sequences. Notwithstanding the differences in their primary structures, the two lysozymes have similarities in their overall backbone conformations, in their modes of binding substrates and probably in their mechanisms of action.By different criteria, the similarity between the folding of the two enzymes can be shown to be statistically significant. Also the transformation which optimizes the agreement between the backbones of the two molecules is shown to accurately align their active site clefts, so that saccharide units bound in the A, B, C and D subsites of hen egg white lysozyme coincide within 1 to 2 Å with analogous saccharides bound to phage lysozyme. Furthermore, a number of the specific interactions between enzyme and substrate which were observed for hen egg white lysozyme, and thought to be important for catalysis, are found to occur in a structurally analogous way in the phage enzyme. Fifty-four atoms from the respective active sites which appear to be equivalent, including saccharides bound in the B and C sites, superimpose with a root-mean-square discrepancy of 1.35 Å.These structural and functional similarities suggest that the two lysozymes have arisen by divergent evolution from a common precursor. This is the first case in which two proteins of completely different amino acid sequence have been shown, with high probability, to have evolved by divergent rather than convergent evolution.  相似文献   

14.
Disruption of the calnexin gene in Saccharomyces cerevisiae did not lead to gross effects on the levels of cell growth and secretion of wild-type hen egg white lysozymes (HEWL). To investigate the function of calnexin in relation to the secretion of glycoproteins, we expressed both stable and unstable mutant glycosylated lysozymes in calnexin-disrupted S. cerevisiae. The secreted amounts of stable mutant glycosylated lysozymes (G49N and S91T/G49N) were almost the same in both wild-type and calnexin-disrupted S. cerevisiae. In contrast, the secretion of unstable mutant glycosylated lysozymes (K13D/G49N, C76A/G49N, and D66H/G49N) greatly increased in calnexin-disrupted S. cerevisiae, although their secretion was very low in the wild-type strain. This indicates that calnexin may act in the quality control of glycoproteins. We further investigated the expression level of the mRNA of the molecular chaperones BiP and PDI, which play a major role in the protein folding process in the ER, when glycosylated lysozymes were expressed in wild-type and calnexin-disrupted S. cerevisiae. The mRNA concentrations of BiP and PDI were evidently increased when the glycosylated lysozymes were expressed in calnexin-disrupted S. cerevisiae. This observation indicates that BiP and PDI may be induced by the accumulation of unfolded glycosylated lysozymes due to the deletion of calnexin.  相似文献   

15.
In the preceding paper in this issue, we described the overproduction of one mutant chicken lysozyme in Escherichia coli. Since this lysozyme contained two amino acid substitutions (Ala31----Val and Asn106----Ser) in addition to an extra methionine residue at the NH2-terminus, the substituted amino acid residues were converted back to the original ones by means of oligonucleotide-directed site-specific mutagenesis and in vitro recombination. Thus, four kinds of chicken lysozyme [Met-1Val31Ser106-, Met-1Ser106-, Met-1Val31- and Met-1 (wild type)] were expressed in E. coli. From the results of folding experiments of the reduced lysozymes by sulfhydryl-disulfide interchange at pH 8.0 and 38 degrees C, followed by the specific activity measurements of the folded enzymes, the following conclusions can be drawn: (i) an extra methionine residue at the NH2-terminus reduces the folding rate but does not affect the lysozyme activity of the folded enzyme; (ii) the substitution of Asn106 by Ser decreases the activity to 58% of that of intact native lysozyme without changing the folding rate; and (iii) the substitution of Ala31 Val prohibits the correct folding of lysozyme. Since the wild type enzyme (Met-1-lysozyme) was activated in vitro without loss of specific activity, the systems described in this study (mutagenesis, overproduction, purification and folding of inactive mutant lysozymes) may be useful in the study of folding pathways, expression of biological activity and stability of lysozyme.  相似文献   

16.
In order to obtain a better understanding of the possible influence of the primary sequence of a protein on its folding pathway, renaturation of reduced human milk lysozyme was compared to that of reduced hen egg white lysozyme. Following disulfide bond formation, under identical conditions, similar products were found during the folding of both lysozymes, but the kinetics of appearance and disappearance of these intermediates as well as the appearance of the native conformation were different.  相似文献   

17.
Mutant human lysozymes (HLZ) lacking two disulfide bonds were constructed to study the importance of each disulfide bond on oxidative refolding. To avoid destabilization, a calcium-binding site was introduced. Five of the six species of two-disulfide mutants could be obtained with enzymatic activity. Based on the information obtained from refolding and unfolding experiments, the order of importance in oxidative refolding was found to be as follows: SS2(Cys30-Cys116) > SS1(Cys6-Cys128) SS3(Cys65-Cys81) > SS4(Cys77-Cys95). Without SS2, these mutants refolded with low efficiency or did not refold at all. The bond SS2 is located in the interface of B-and D-helices, and a small hydrophobic cluster is formed near SS2. This cluster may play an important role in the folding process and stabilization, and SS2 may act as a stabilizer through its polypeptide linkage. The bond SS2 is the most important disulfide bond for oxidative folding of lysozymes.  相似文献   

18.
1. The secondary structure of the pigeon egg-white lysozyme shows important differences when compared to other type c lysozymes. These differences are mainly located at the region comprising residues 77-84. This segment contains one alpha-helix in the lysozymes c studied by means of an X-ray analysis, while the residues at such positions in pigeon lysozyme would form two beta-bends. 2. Analysis of the tertiary structure of the pigeon lysozyme by means of hydropathy profiles reveals that the above segment seems to be more hydrophilic in the pigeon enzyme than in other type c lysozymes. 3. Though a certain similarity to the calcium-binding loop of alpha-lactalbumins is detected in pigeon lysozyme, the circular dichroism spectra of the protein at neutral pH do not change in the presence of Ca2+ ions. 4. The presented structural analysis is discussed in terms of function-structure and antigenicity relationships between the type c lysozymes.  相似文献   

19.
Lysozymes have important roles in innate immune system. Here, a c-type and a g-type lysozyme were identified from yellow catfish (Pelteobagrus fulvidraco). The deduced amino acid sequences of both lysozymes were conserved in catalytic sites and structural features as compared to their counterparts from other species. It was interesting that the g-type lysozyme possessed a signal peptide. The c-type and g-type lysozymes had the highest identity 89.4 and 76.2 % with that from channel catfish respectively. Phylogenetic analysis showed that the two lysozymes had a closely relationship with that from channel catfish and Astyanax mexicanus. Lysozymes from one order could form more than one clade in the phylogenetic tree, which indicated the gene duplications in evolution. Expression analysis with real time quantitative PCR revealed that the two lysozyme genes were constitutively expressed in all the tested tissues. The highest expression of c-type lysozyme was observed in liver, followed by spleen, head kidney, and trunk kidney, while the g-type lysozyme had highest expression in intestine, followed by spleen, head kidney, and trunk kidney. The mRNA levels of both genes were all up-regulated after challenging with Aeromonas hydrophila. However, there were differences in tissues and time points when the mRNA levels reached its peak between the two lysozymes. It indicated the diversity in regulation mechanisms and detailed functions among lysozymes. Taking together, these results will benefit the understanding of yellow catfish lysozymes.  相似文献   

20.
Abstract. Lysozymes are widely distributed in many organisms as one of the components of defence mechanisms. In herbivores, when nitrogen is not contained in sufficient amounts in the diet, bacteria lysed by stomach lysozymes are used as sources of nitrogen. In ruminants, lysozymes function as digestive enzymes in the true stomach. A convergence of amino acid sequence has been shown between the stomach lysozymes of different ruminants, and similar lysozymes have recently been reported in the gut or salivary gland of insects. In this mini review, the enzymatic and ecological functions of lysozymes in insects, particularly in termites, are introduced, together with future studies that are needed in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号