首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration, cytoarchitectonic segregation and neuritogenesis of the inferior olive (ION) and lateral reticular (LRN) neurons are described in the rat. Generated in the same primary precerebellar neuroepithelium, at embryonic days 12-13 (E12-E13) for the ION and E12-E14 for the LRN, the postmitotic cells take either the intraparenchymal (smms, for ION neurons) or the subpial migratory streams (mms, for LRN neurons and other populations, as those of the external cuneate nucleus, ECN). The ION neurons settle in their ultimate domain from E16 to E18, ipsilaterally to their proliferation side. The LRN (and ECN) neurons cross the midline at the "floor plate" (FP) level, and settle contralaterally to their birthplace between E17 and E19. In both cases, the acquisition of a mature dendritic tree is a late event when compared to the precocious axonogenesis. The FP structure may play a major role in i) attracting the axons of the precerebellar neurons, and ii) instructing these neurons whether to cross the midline or not. Thus, ultimately the FP may govern the pattern (crossed or uncrossed) of the projections of the ION and LRN to their common cerebellar target.  相似文献   

2.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984-985; Berry and Rogers, 1965, J. Anat. 99:691-709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodeoxyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells continued to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slice, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61-84; Hatten and Mason, 1990, Experientia 46:907-916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cultures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells.  相似文献   

3.
Neuronal migration and lamina-specific primary afferent projections are crucial for establishing spinal cord circuits, but the underlying mechanisms are poorly understood. Here, we report that in mice lacking Dcc (deleted in colorectal cancer), some early-born neurons could not migrate ventrally in the spinal cord. Conversely, forced expression of Dcc caused ventral migration and prevented dorsolateral migration of late-born spinal neurons. In the superficial layer of the spinal cord of Dcc-/- mutants, mislocalized neurons are followed by proprioceptive afferents, while their presence repels nociceptive afferents through Sema3a. Thus, our study has shown that Dcc is a key molecule required for ventral migration of early-born neurons, and that appropriate neuronal migration is a prerequisite for, and coupled to, normal projections of primary afferents in the developing spinal cord.  相似文献   

4.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of alpha-methylparatyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of alpha-methylparatyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

5.
During CNS development neurons undergo directional migration to achieve their adult localizations. To study neuronal migration, we used a model cell line of immortalized murine neurons (gonadotropin-releasing hormone expressing neurons; GN11), enriched with caveolins and caveolae invaginations that show in vitro chemotaxis upon serum exposure. Cholesterol depletion with methyl-β-cyclodextrin induced the loss of caveolae and the inhibition of chemotaxis, thus suggesting that GN11 migration depends upon the structural integrity of caveolae. Polarization of proteins and organelles is a hallmark of cell migration. Accordingly, GN11 cells transmigrating through filter pores exhibited a polarized distribution of caveolin-1 isoform (cav-1) in the leading processes. In contrast, during two-dimensional migration cav-1 and caveolae polarized at the trailing edge. As caveolae are enriched with signaling molecules, we suggest that asymmetrical localization of caveolae may spatially orient GN11 neurons to incoming migratory signals thereby transducing them into directional migration.  相似文献   

6.
During cortical development, newly generated neurons migrate radially toward their final positions. Although several candidate genes essential for this radial migration have been reported, the signaling pathways regulating it are largely unclear. Here we studied the role of phosphatidylinositol (PI) 3-kinase and its downstream signaling molecules in the radial migration of cortical neurons in vivo and in vitro. The expression of constitutively active and dominant-negative PI 3-kinases markedly inhibited radial migration. In the neocortical slice culture, a PI 3-kinase inhibitor suppressed the formation of GTP-bound Rac1 and Cdc42 and radial migration. Constitutively active and dominant-negative forms of Rac1 and Cdc42 but not Akt also significantly inhibited radial migration. In migrating neurons, wild-type Rac1 and Cdc42 showed different localizations; Rac1 localized to the plasma membrane and Cdc42 to the perinuclear region on the side of the leading processes. These results suggest that both the PI 3-kinase/Rac1 and Cdc42 pathways are involved in the radial migration of cortical neurons and that they have different roles.  相似文献   

7.
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2(Lp/+) and Vangl2(Lp/Lp) embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2(Lp/+) embryos did not exacerbate the Vangl2(Lp/+) neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.  相似文献   

8.
神经细胞迁移导向的分子机制   总被引:7,自引:1,他引:7  
Rao Y  Wu Y 《生理科学进展》2000,31(3):198-204
自19世纪以来的研究表明,在胚胎发育期间和出生后,包括人在内的哺乳动物神经系统的大部分神经细胞(也许是所有神经细胞)都要经过一定距离的多运动才能抵达它们发挥功能的部位。这些细胞如何知道往哪个方向迁移呢?我们在分子水平对这个问题进行了研究。1999年发表的结果给出这样一个答案:脑内存在导向性分子,可以指导神经细胞的迁移方向,具体的发现是:一个叫Slit的分泌性蛋白南,对神经细胞有性作用,它的浓度梯度  相似文献   

9.
10.
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.  相似文献   

11.
In order to study migration of neurons in vitro, we cultured microexplants of the newborn mouse cerebellum outer layer, which is rich in immature granule cells, on a substratum double-coated with poly-L-lysine and laminin. The granule cells first migrated away from the explant along radially oriented parallel bundles of their neurites, thus displaying typical contact guidance. Then, in almost all explants, they changed their orientation by 90 degrees to extend cell processes and translocate perpendicular to the radial neurites. Orientation and migration of neurons perpendicular to the aligned parallel structure is a novel type of contact-guided cell behavior, and may have interesting implications in migration of neurons in the cerebellum and other parts of the nervous system.  相似文献   

12.
During the development of cerebral cortex, newborn pyramidal neurons originated from the ventricle wall migrate outwardly to the superficial layer of cortex under the guidance of radial glial filaments. Whether this radial migration of young neurons is guided by gradient of diffusible factors or simply driven by a mass action of newly generated neurons at the ventricular zone is entirely unknown, a potential guidance mechanism that has long been overlooked. Our recent study showed that a guidance molecule semaphorin-3A, which is expressed in descending gradient across cortical layers, may serve as a chemoattractive guidance signal for radial migration of newborn cortical neurons toward upper layers. We hypothesize the existence of four groups of extracellular factors that can guide the radial migration of young neurons: (1) attractive factors expressing in superficial layers of cortex, (2) repulsive factors enriched in the ventricular zone, (3) pro-migratory factors uniformly expressed in all cortical layers and (4) stop signals locally expressed in the outmost layer of cortex.Key words: radial migration, cortex, guidance, semaphorin, diffusible factors, growth coneThe mammalian cerebral cortex has the typical laminar structure, the formation of which is essential for neurons in each cortical layer to establish the specific input and output connections with other brain regions. The development of the cortical laminar structure is known to involve the well-coordinated radial migration of newborn pyramidal neurons during development.1 After young neurons are generated from the ventricular zone (VZ) and subventricular zone (SVZ), they leave their birthplace and migrate along radial glial filaments toward the surface of cortical plate (CP), crossing existing cortical layers composed of earlier born neurons and eventually settling down beneath the marginal zone (MZ, layer I).13 It is generally accepted that the adhesion between neurons and radial glial filaments provides the directionality for these young neurons, and the targeting of neurons to specific lamina was controlled by the selective detachment of migrating neurons from radial glial fibers upon reaching the designated cortical layer.2,3 However, we believe that the radial glial fibers can only serve as the adhesive scaffold for migrating neurons and constrain their migration in the radial dimension; it remains an open question regarding the nature of the signals that cause newborn neurons to migrate consistently outward along the fiber rather than inward. Whether the radial migration of cortical neurons is guided by gradient of diffusible factors or simply driven by a mass action of newly generated neurons at the VZ is entirely unknown, a potential guidance mechanism that has long been overlooked.Recently we found that the radial migration of layer II/III cortical neurons during development is guided by an extracellular guidance molecule semaphorin-3A (Sema3A).4 We observed that Sema3A is expressed in a descending gradient across the cortical layers, whereas its receptor neuropilin-1 (NP1) is expressed at a high level in migrating neurons. By in utero electroporation, we were able to monitor the migration of a subpopulation of cortical neurons in their native environment and examine the effect of perturbing Sema3A signaling. We found that downregulation or conditional knockout of NP1 in young neurons impeded their radial migration with severe misorientation of affected neurons during their migration without altering their cell fate. Studies in cultured cortical slices further showed the requirement of the endogenous gradient of Sema3A for the proper migration of newborn neurons. Results from transwell chemotaxis assays in dissociated culture of newborn cortical neurons also supported the notion that Sema3A attracts the migration of these neurons through the receptor NP1. Thus, Sema3A may serve as a chemoattractive guidance signal for the radial migration of newborn cortical neurons toward upper layers. This is the first demonstration that radial migration of cortical neurons is guided by gradient of extracellular guidance factors. This study also suggests that guidance factors may guide the radial migration by their actions on the growth cone of the leading process of migrating neurons, via mechanisms similar to that found for their actions on axon guidance and dendritic orientation, followed by long-range cytoplasmic signaling that coordinates the forward motility of the entire neuron.5In this study, we have only observed an attractive effect of Sema3A in the radial migration of the layer II/III cortical neurons. However, to form the highly ordered laminar structure of the cortex, the entire process of neuronal migration is likely to depend on coordinated actions of multiple factors in the developing cortex, including other semaphorin family members and other guidance molecules, e.g., slits6 and ephrins,7 which are also expressed in the CP. We hypothesize that four groups of extracellular factors orchestrate to promote the proper radial migration and cortical lamination: (1) factors that are expressed in superficial layers of cortex and in a descending gradient, like Sema3A, may attract the upward migration of newborn neurons (attractive factors), (2) factors enriched in the VZ may exert repulsive action and help to “push” newborn neurons out of their birthplace (repulsive factors), (3) those factors widely expressed in all cortical layers may promote the motility of migrating neurons (pro-migratory factors) and (4) Some repulsive cues may be locally expressed in the superficial layer of cortex to prevent the over migration of neurons when they have arrived at the outmost layer (stop signal). Under the guidance of these four groups of factors, newborn neurons migrate all the way from VZ to the outmost layer of CP and then settle down. One of our recent tasks is to try to identify these four groups of factors.If the radial migration and cortical lamination are guided by diffusible factors, why is radial glial system necessary for this migration process? In other words, why earlier-born neurons in different layers cannot provide the supportive adhesion to young neurons during their radial migration? A potential explanation is that neurons in cortex undergo maturation after terminating their migration, accompanying with changes in their expression profiles of adhesion ligands, and become less and less supportive to the neuronal migration. In contrast, as a kind of cortical progenitor cells, radial glial cells maintain a relatively ‘young’ state and continue to express supportive adhesion ligands over a very long developmental stage. Thus, only the radial glial filament is capable of providing a bridge for newborn neurons to migrate over a very long distance across the non-permissive cell layers. In summary, we believe that during the cortical radial migration, signals from diffusible factors override the adhesive signal from radial glial fibers to promote the appropriate migration and placement of newborn neurons.? Open in a separate windowFigure 1A schematic diagram for the guidance of cortical radial migration by diffusible factors. (A) A model for the distribution of four groups of guidance factors in developing cortex. Radial glial filaments are shown in red, young neurons are in green. There may exist a descending gradient of attractive factors in upper cortical layers (yellow) and an ascending gradient of repulsive factors (blue) near the ventricular zone (VZ). Stop signals (purple) may come from the surface of cortex, and pro-migratory factors (dots) may be widely distributed. (B) Representative image of EGFP-labeled neurons migrating along radial glial filaments in the cortical tissue of E20 mouse. Sections were counterstained with DAPI (Red). Scale bar, 100 µm.  相似文献   

13.
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration. Neuronal migration and adhesion assays indicate that SPARC-like 1 functions to terminate neuronal migration by reducing the adhesivity of neurons at the top of the CP. Cortical neurons fail to achieve appropriate positions in the absence of SPARC-like 1 function in vivo. Together, these data suggest that antiadhesive signaling via SPARC-like 1 on radial glial cell surfaces may enable neurons to recognize the end of migration in the developing cerebral cortex.  相似文献   

14.
During corticogenesis, the regulation of neuronal migration is crucial for the functional organization of the neocortex. Glutamatergic neurons are major excitatory components of the mammalian neocortex. In order to elucidate the specific molecular mechanisms underlying their development, we used single-cell microarray analysis to screen for mouse genes that are highly expressed in developing glutamatergic neurons. We identified dpy-19-like 1 (Dpy19l1), a homolog of C. elegans dpy-19, which encodes a putative multi-transmembrane protein shown to regulate directed migration of Q neuroblasts in C. elegans. At embryonic stages Dpy19l1 is highly expressed in glutamatergic neurons in the mouse cerebral cortex, whereas in the subpallium, where GABAergic neurons are generated, expression was below detectable levels. Downregulation of Dpy19l1 mediated by shRNA resulted in defective radial migration of glutamatergic neurons in vivo, which was restored by the expression of shRNA-insensitive Dpy19l1. Many Dpy19l1-knockdown cells were aberrantly arrested in the intermediate zone and the deep layer and, additionally, some extended single long processes towards the pial surface. Furthermore, we observed defective radial migration of bipolar cells in Dpy19l1-knockdown brains. Despite these migration defects, these cells correctly expressed Cux1, which is a marker for upper layer neurons, suggesting that Dpy19l1 knockdown results in migration defects but does not affect cell type specification. These results indicate that Dpy19l1 is required for the proper radial migration of glutamatergic neurons, and suggest an evolutionarily conserved role for the Dpy19 family in neuronal migration.  相似文献   

15.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of -methyl-para-tyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of -methyl-para-tyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

16.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984–985; Berry and Rogers, 1965, J. Anat. 99:691–709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodexyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells contiuned to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slices, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61–84; Hatten and Mason, 1990, Experientia 46:907–916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cutures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The tyrosine kinase receptor cKit and its ligand stem cell factor (SCF) are well known mediators in proliferation, survival, and positive chemotaxis of different cell types in the hematopoietic system. However, and in spite of previous reports showing robust expression of cKit and SCF in the brain during development, their possible function in the cerebral cortex has not been clarified. In this study, embryonic knockdown expression of cKit in the rat cortex by in utero electroporation of specific RNAi resulted in delayed radial migration of cortical neurons. In conditional Nestin‐cKit KO homozygous mutants, radial migration in the cortex was also delayed. The opposite phenotype was observed after overexpressing cKit in the cortex: radial migration was accelerated. Callosal fibers electroporated with cKit RNAi were also delayed in their extension within the contralateral cortex and eventually failed to innervate their target area. In vitro experiments showed that, whereas SCF was able to promote migration of cortical neurons, it had no effect on cortical neurite outgrowth. In summary, our results demonstrate that (1) cKit is necessary for radial migration of cortical neurons, probably through SCF binding and (2) cKit is necessary for the correct formation of the callosal projection, most likely by a mechanism not involving SCF. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 871–887, 2013  相似文献   

18.
The complicated mammalian brain structure arises from accurate movements of neurons from their birthplace to their final locations. Detailed observation of this migration process by various methods revealed that neuronal migration is highly motile and that there are different modes of migration. Moreover, mouse mutants or human disorders that disrupt normal migration have provided significant insights into molecular pathways that control the neuronal migration. Although our knowledge is still fragmentary, it is becoming clear that various molecules are participating in this process. In this review, we outline about the cellular and molecular mechanisms of neuronal migration in the cerebral cortex.  相似文献   

19.
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.  相似文献   

20.
14‐3‐3 proteins are ubiquitously‐expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14‐3‐3epsilon and 14‐3‐3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14‐3‐3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14‐3‐3gamma‐deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14‐3‐3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time‐lapse live imaging of brain slices revealed that the ablation of the 14‐3‐3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14‐3‐3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14‐3‐3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14‐3‐3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600–614, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号