首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

2.
A method for the determination of tetrabromobisphenol A (TBBPA) in human serum utilizing solid-phase extractions (SPEs) and liquid chromatography (LC) with electrospray ionization tandem MS (MS/MS) has been developed. After purification and concentration of TBBPA using consecutive SPEs on reversed-phase and normal-phase cartridges, the serum sample was subjected to LC. TBBPA was separated on a C18 reversed-phase column by gradient elution with a mixture of water, methanol, and acetonitrile as the mobile phase, and then detected with electrospray ionization MS/MS in negative ion mode. 13C12-TBBPA was suitable as an internal standard for the reproducible determination of TBBPA in human serum samples (5 g). The method has been validated in TBBPA concentration range of 5-100 pg per g serum, and the recoveries in the concentration range were higher than 83.3%. The repeatabilities of the proposed method of non-spiked control serum (6.3 pg per g serum) and spiked serum (added 5-100 pg per g serum) were within 10.0% as relative standard deviations. The limit of quantification (LOQ) for TBBPA was 4.1 pg per g serum, which was corresponded to 0.63 fmol on column.  相似文献   

3.
An LC-ESI-MS-MS method for the analysis of metabolites of four nitrofurans (furazolidone, furaltadone, nitrofurazone and nitrofurantoin) in raw milk has been developed. The samples were achieved by hydrolysis of the protein-bound drug metabolites, derivatization with 2-nitrobenzaldehyd (2-NBA) and clean-up extraction liquid-liquid with ethyl acetate. LC separation was achieved by using a Phenomenex Luna C-18 column. The mass spectrometer operated in multiple reaction monitoring mode (MRM) with positive electro-spray interface (ESI). The method validation was done according to the criteria laid down in Commission Decision No. 2002/657 EC. The validation includes the determination of linearity, repeatability, within-laboratory reproducibility, accuracy, decision limit (CCalpha) and detection capability (CCbeta). The calibration curves were linear, with typical (R(2)) values higher than 0.991. The coefficient of variation (CV, %) was lower than 9.3% and the accuracy (RE, %) ranged from -9.0% to 7.0%. CV within-laboratory reproducibility was lower than 13%. The limits of decision (CCalpha) and detection capability (CCbeta) were 0.12-0.29 microg/kg and 0.15-0.37 microg/kg, thus below the minimum required performance limit (MRPL) set at 1 microg/kg by the UE. This validated method was successfully applied for the determination of nitrofuran metabolites in a large number of milk samples.  相似文献   

4.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of lansoprazole in human plasma using omeprazole as the internal standard. The analyte and internal standard were extracted from the plasma samples by liquid-liquid extraction using diethyl-ether-dichloromethane (70:30; v/v) and chromatographed on a C(18) analytical column. The mobile phase consisted of acetonitrile-water (90:10; v/v)+10 mM formic acid. The method has a chromatographic total run time of 5 min and was linear within the range 2.5-2000 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by Multiple Reaction Monitoring (MRM). The intra- and inter-run precision, calculated from quality control (QC) samples, was less than 3.4%. The accuracy as determined from QC samples was less than 9%. The method herein described was employed in a bioequivalence study of two capsule formulations of lansoprazole.  相似文献   

5.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of Lisinopril in human plasma using Enalaprilat as internal standard. The analyte and internal standard were extracted from the plasma samples by solid-phase extraction using Waters HLB Oasis SPE cartridges and chromatographed on a C8 analytical column. The mobile phase consisted of acetonitrile/water (60:40, v/v) + 20 mM acetic acid + 4.3 mM of triethylamine. The method had a chromatographic total run-time of 6.5 min and was linear within the range 2.00-200 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM). The precision (CV%) and accuracy, calculated from limit of quantification (LOQ) samples (n = 8), were 8.9 and 98.9%, respectively. The method herein described was employed in a bioequivalence study of two tablet formulations of Lisinopril 20mg.  相似文献   

6.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

7.
A simple, sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of tacrolimus (FK506) in rabbit aqueous humor. After a simple protein-precipitation by methanol, the post-treatment samples were separated on a reversed-phase, Thermo-Hypersil-BDS-C18 column with a mobile phase of a mixture of 0.1% formic acid in water, methanol and acetonitrile (5:85:10, v/v/v). Tacrolimus and ritonavir (internal standard, IS) were all detected by the selected reaction-monitoring (SRM) mode. The method developed was validated in rabbit aqueous humor with a daily working range of 0.5-100 ng/ml with correlation coefficient, r>0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision, possible matrix effect and stability. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of tacrolimus in rabbit aqueous humor.  相似文献   

8.
A sensitive and specific method for the determination of the active primary amine metabolite of sibutramine, N-di-desmethylsibutramine (BTS 54,505), in human plasma was developed, based on high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS). The samples were extracted from plasma with methyl tert.-butyl ether, followed by separation and evaporation after addition of the internal standard, propranolol, and basification with sodium hydroxide. The residue was reconstituted in mobile phase and injected into the HPLC-MS-MS system. Chromatography was performed on an ODS MS column with a mobile phase consisting of acetonitrile (containing 0.1% trifluoroacetic acid, v/v)-0.1% trifluoroacetic acid (55:45, v/v) at a flow-rate of 0.3 ml/min. Multiple reaction monitoring using precursor-->product ion combinations at m/z 252.00-->125.00 and 260.00-->115.70 was applied to determine BTS 54,505 and propranolol, respectively. Linearity was confirmed in the concentration range 0.328-32.8 ng/ml in human plasma and the imprecision of this assay was less than 19.90% over the entire concentration range. The method is sufficiently sensitive and repeatable to be used in pharmacokinetic studies.  相似文献   

9.
A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.  相似文献   

10.
The determination of neurotransmitters (NTs) and their metabolites facilitates better understanding of complex neurobiology in the central nervous system disorders and has expanding uses in many other fields. We present a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) method for the quantification of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), vanillymandelic acid (VMA), 3-methoxy-4-hydroxy phenylglycol (MHPG), 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), glutamate (Glu), and γ-aminobutyric acid (GABA). The NTs and their metabolites were dansylated and analyzed by an LC gradient on a C18 column on-line with a tandem mass spectrometer. This method exhibited excellent linearity for all of the analytes with regression coefficients higher than 0.99. The lower limit of quantification (LLOQ) values for DA, DOPAC, HVA, NE, VMA, MHPG, 5-HT, 5-HIAA, Glu, and GABA were 0.57, 0.37, 0.35, 0.40, 0.35, 0.91, 0.27, 0.43, 0.65, and 1.62 pmol/ml, respectively. The precision results were expressed as coefficients of variation (CVs), ranging from 1.5% to 13.6% for intraassay and from 2.9% to 13.7% for the interassay. This novel LC-ESI/MS/MS approach is precise, highly sensitive, specific, and sufficiently simple. It can provide an alternative method for the quantification of the NTs and their metabolites in human plasma.  相似文献   

11.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed for the simultaneous determination of amiodarone and desethylamiodarone in human plasma. After the addition of the internal standard tamoxifen, plasma samples were extracted using Oasis MCX solid-phase extraction cartridges. The compounds were separated on a 5 microm Symmetry C18 (Waters) column (150 x 3.0 mm, internal diameter) with a mobile phase of acetonitrile-0.1% forrmic acid (46:54, v/v) at a flow-rate of 0.5 ml/min. The overall extraction efficiency was more than 89% for both compounds. The assay was sensitive down to 1 microg/l for amiodarone and down to 0.5 microg/l for desethylamiodarone. Within-run accuracies for quality-control samples were between 95 and 108% of the target concentration, with coefficients of variation <8%. The proposed method enables the unambiguous identification and quantitation of amiodarone and desethylamiodarone in both clinical and forensic specimens.  相似文献   

12.
Concentrations of tryptophan and its metabolites in plasma are of great interest in determining proper diagnosis and medication of several neurological diseases like, for example, Alzheimer's disease. A method of standard addition was developed to determine total level of tryptophan and two of its metabolites, kynurenine and kynurenic acid, in human plasma by capillary liquid chromatography-electrospray ionization tandem mass spectrometry. Plasma samples were simply deproteinized by addition of diluted perchloric acid. Samples were then mixed with trichloroacetic acid and injected onto a capillary column. Analytes were separated by a fast gradient elution of the injected samples. Detection was performed by sheathless electrospray tandem mass spectrometry in the multiple reaction monitoring mode. Linear calibration curves were obtained for spiked plasma sample with up to 100% of the expected analytes concentrations. The determined concentrations were well within ranges previously reported (i.e., 6 nM-95 microM) and limit of detections were around 3 nM for each analyte.  相似文献   

13.
The aim of this work was to develop a method for determination of cortisol in saliva by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Saliva was sampled on Salivette tubes. These were centrifuged, deuterium-labeled cortisol was added as internal standard and the proteins precipitated by acetonitrile. The supernatant was evaporated, dissolved in methanol acidified with acetic acid and analyzed by LC-MS-MS. The with-in run precision, tested by pooling saliva samples from volunteers and then analyzing these in a single run, was found to be 7% at 0.7 microgram l(-1). The between-run precision was tested by analysis of the same samples at different days and found to be 11% at 2.5 microgram l(-1). The limit of quantification was 0.5 microgram l(-1). The method was applied for analysis of saliva samples from three volunteers during their last week before vacation and the first and second week on vacation. In addition, the method was compared to analysis by an immunological method. The values from the immunological method were 2.7 times higher than the LC-MS-MS results.  相似文献   

14.
A fully automated semi-microbore high performance liquid chromatographic (HPLC) method with column-switching using UV detection was developed for the determination of glimepiride from human plasma samples. Plasma sample (900 microl) was deproteinated and extracted with ethanol and acetonitrile. The extract (70 microl) was directly injected into a Capcell Pak MF Ph-1 pre-column where the primary separation occurred to remove proteins and retain drugs using a mixture of acetonitrile and 10mM phosphate buffer (pH 2.18) (20:80, v/v). The analytes were transferred from the pre-column to an intermediate column using a switching valve and then subsequently separated on an analytical column and monitored with UV detection at 228 nm. Glimepiride was eluted with retention time 34.9 min without interference of endogenous substance from plasma. The limit of quantification (LOQ) was 10 ng/ml for glimepiride. The calibration curves were linear over the concentration range of 10-400 ng/ml (r(2) = 0.9997). Moreover, inter- and intra-day precisions of the method were less than 15% and accuracies were higher than 99%. The developed method was successfully applied for the quantification of glimepiride in human plasma and was used to support a human pharmacokinetic study following a single oral administration of 2 mg glimepiride.  相似文献   

15.
Previous studies have shown that plasma 1,5-anhydroglucitol (1,5-AG) is markedly reduced among diabetic patients and therefore serves as a sensitive marker for short-term glycemic control. The current study describes the development of the liquid chromatography negative ion electrospray tandem mass spectrometry (LC-MS/MS) method to measure 1,5-AG in human plasma. The samples were pre-treated with protein precipitation and an isotope-labeled internal standard was used. Chromatographic separation was achieved on amide column (150 mm x 2.0mm i.d., 5 microm) followed by detection with multiple reaction monitoring mode. Linearity, accuracy, precision, recovery, matrix effect, and stability were evaluated during method validation over the range of 1-50 microg/mL. The validated method has been clinically applied among 159 type 2 diabetic patients and 290 control subjects. A marked reduction in 1,5-AG levels among the diabetic patients and significant between-gender difference in nondiabetic subjects were observed.  相似文献   

16.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

17.
We describe a liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for levocetirizine quantification (I) in human plasma. Sample preparation was made using a fexofenadine (II) addition as internal standard (IS), liquid-liquid extraction using cold dichloromethane, and dissolving the final extract in acetonitrile. I and II (IS) were injected in a C18 column and the mobile phase composed of acetonitrile:water:formic acid (80.00:19.90:0.10, v/v/v) and monitored using positive electrospray source with tandem mass spectrometry analyses. The selected reaction monitoring (SRM) was set using precursor ion and product ion combinations of m/z 389>201 for I and m/z 502>467 for II. The limit of quantification and the dynamic range achieved were 0.5ng/mL and 0.5-500.0ng/mL. Validation results on linearity, specificity, accuracy, precision and stability, as well as its application to the analysis of plasma samples taken up to 48h after oral administration of 5mg of levocetirizine dichloridrate in healthy volunteers demonstrate its applicability to bioavailability studies.  相似文献   

18.
A simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of memantine (I) in human plasma is presented. Sample preparation consisted of the addition of amantadine (II) as internal standard (IS), liquid-liquid extraction in basic conditions using a mixture of diethyl ether-chloroform (7:3, v/v) as extracting solvent, followed by centrifugation, solvent evaporation and sample reconstitution in methanol. Both I and II (internal standard) were analyzed using a C18 column and a mobile phase composed of methanol-water-formic acid (80:20:0.1, v/v/v). Eluted compounds were monitored using positive mode electrospray (ES) tandem mass spectrometry. The analyses were carried out by selected reaction monitoring (SRM) using the parent to daughter combinations of m/z 180>163 (memantine) and m/z 152>135 (amantadine). The peak areas from the analyte and IS were used for quantification of I. The achieved limit of quantification (LOQ) was 0.1 ng/mL; the assay exhibited a linear dynamic range of 0.1-50.0 ng/mL with a determination coefficient (r2) of at least 0.98. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of samples taken up to 320 h after oral administration of 20mg (two 10mg capsules) of I in healthy volunteers demonstrated the applicability to bioequivalence studies.  相似文献   

19.
A highly sensitive and specific quantification method of estrone and estradiol in human serum was described based upon the use of picolinoyl derivatization and liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) in a positive mode. Estrogens were treated with picolinoyl chloride hydrochloride or picolinic acid and 2-methyl-6-nitrobenzoic anhydride followed by a solid-phase extraction with ODS cartridge. Picolinoyl derivatization proceeded quantitatively even in a microscale, and the picolinoyl esters provided simple positive ESI-mass spectra showing [M+H](+) as base peaks for these estrogens. The picolinoyl derivatives of these estrogens showed 100-fold higher detection response compared to underivatized intact molecules by LC-ESI-MS (selected reaction monitoring). Using this derivatization, estrogens spiked in the charcoal treated human serum samples were analyzed with limit of quantification (LOQ), intra-day accuracy and precision of 1.0pg/ml, 96.0% and 9.9% for estrone, and 0.5pg/ml, 84.4% and 12.8% for estradiol, respectively. Estrone and estradiol added to the crude serum samples were recovered with comparable LOQ and accuracy obtained for the charcoal treated serum samples as well.  相似文献   

20.
Acyl-CoAs have important role in fat and glucose metabolism of the cells. In this study we have developed an on-line HPLC-ESI-MS/MS method for determination of long-chain acyl-CoA compounds in rat liver samples. Six long-chain acyl-CoAs (C16:0, C16:1, C18:0, C18:1, C20:0 and C20:4) were separated with a C4 reversed-phase column using triethylamine acetate and acetonitrile gradient. Negative electrospray ionization is very suitable for acyl-CoA compounds and excellent MS/MS spectra for long-chain acyl-CoAs can be obtained. MS/MS method with an ion trap mass spectrometer makes it possible to identify and quantitate individual acyl-CoAs simultaneously. The method proved to be sensitive enough for determination of all compounds of interest using 0.4-0.7 g of tissue and was validated in the range of 0.1-15.0 pmol/microl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号