首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thimerosal (o-Ethylmercurithio)benzoic acid, TMS), a membrane-impermeable, sulfhydryl-oxidizing agent, has been described to increase the K+ current IKs in KCNE1-injected Xenopus laevis oocytes. Since there are no cysteine residues in the extracellular domain of KCNE1, it has been proposed that TMS interacts with its partner protein KCNQ1. The aim of this study was therefore to investigate the interaction of TMS with KCNQ1 and the respective K+current IK. In CHO cells stably transfected with KCNQ1/KCNE1, TMS increased IKs, whereas in CHO cells expressing KCNQ1 alone, TMS initially decreased IK. TMS also affected the cytosolic pH (pHi) and the cytosolic Ca2+ activity ([Ca2+]i) in these cells. TMS slowly decreased pHi. With a short delay, TMS increased [Ca2+]i by store depletion and capacitative influx. The time course of the effects of TMS on pHi and [Ca2+]i did not correlate with the effect of TMS on IK. We therefore anticipated a different mode of action by TMS and investigated the influence of TMS on cysteine residues of KCNQ1. For this purpose, KCNQ1wt and two mutants lacking a cysteine residue in the S6 or the S3 segment (KCNQ1C331A and KCNQ1C214A, respectively) were expressed in Xenopus laevis oocytes. A sustained current decrease was observed in KCNQ1wt and KCNQ1C331A, but not in KCNQ1C214A-injected oocytes. The analysis of tail currents, I/V curves and activation kinetics revealed a complex effect of TMS on the gating of KCNQ1wt and KCNQ1C331A. In another series we investigated the effect of TMS on IKs. TMS increased IKs of KCNQ1C214A/KCNE1-injected oocytes significantly less than IKs in KCNQ1wt/KCNE1- or KCNQ1C331A/KCNE1-injected cells. These results suggest that thimerosal interacts with the cysteine residue C214 in the S3 segment of KCNQ1, leading to a change of its gating properties. Our results support the idea that not only the inner shell, but also the outer shell of the channel is important for the gating behavior of voltage dependent K+ channels.  相似文献   

3.
The congenital long QT syndrome (LQTS) is a hereditary cardiac disease characterized by prolonged ventricular repolarization, syncope, and sudden death. Mutations causing LQTS have been identified in various genes that encode for ionic channels or their regulatory subunits. Several of these mutations have been reported on the KCNQ1 gene encoding for a potassium channel or its regulatory subunit (KCNE1). In this study, we report the biophysical characteristics of a new mutation (L251P) in the transmembrane segment 5 (S5) of the KCNQ1 potassium channel. Potassium currents were recorded from CHO cells transfected with either wild type or mutant KCNQ1 in the presence or in the absence of its regulatory subunit (KCNE1), using the whole-cell configuration of the patch clamp technique. Wild-type KCNQ1 current amplitudes are increased particularly by KCNE1 co-expression but no current is observed with the KCNQ1 (L251P) mutant either in the presence or in the absence of KCNE1. Coexpressing KCNE1 with equal amount of cDNAs encoding wild type and mutant KCNQ1 results in an 11-fold reduction in the amplitude of potassium currents. The kinetics of activation and inactivation and the activation curve are minimally affected by this mutation. Our results suggest that the dominant negative effect of the P251L mutation on KCNQ1 channel explains the prolonged repolarization in patients carrying this mutation.  相似文献   

4.
Congenital long QT syndrome is a cardiac disorder characterized by prolongation of QT interval on the surface ECG associated with syncopal attacks and a high risk of sudden death. Mutations in the voltage-gated potassium channel subunit KCNQ1 induce the most common form of long QT syndrome (LQT1). We previously identified a hot spot mutation G314S located within the pore region of the KCNQ1 ion channel in a Chinese family with long QT syndrome. In the present study, we used oocyte expression of the KCNQ1 polypeptide to study the effects of the G314S mutation on channel properties. The results of electrophysiological studies indicate G314S, co-expressed with KCNE1 was unable to assemble to form active channel. G314S, co-expressed with WT KCNQ1 and KCNE1, suppressed Iks currents in a dominant-negative manner, which is consistent with long QT syndrome in the members of the Chinese family carrying G314S KCNQ1 mutation.  相似文献   

5.
Long QT syndrome (LQTS) 1 is the most common type of inherited LQTS and is linked to mutations in the KCNQ1 gene. We identified a KCNQ1 missense mutation, KCNQ1 G325R, in an asymptomatic patient presenting with significant QT prolongation (QTc, 448–600 ms). Prior clinical reports revealed phenotypic variability ranging from the absence of symptoms to syncope among KCNQ1 G325R mutation carriers. The present study was designed to determine the G325R ion channel phenotype and its association with the clinical LQTS presentation. Electrophysiological testing was performed using the Xenopus oocyte expression system. KCNQ1 G325R channels were non-functional and suppressed wild type (WT) currents by 71.1%. In the presence of the native cardiac regulatory ß-subunit, KCNE1, currents conducted by G325R and WT KCNQ1 were reduced by 52.9%. Co-expression of G325R and WT KCNQ1 with KCNE1 shifted the voltage-dependence of IKs activation by 12.0 mV, indicating co-assembly of mutant and WT subunits. The dysfunctional biophysical phenotype validates the pathogenicity of the KCNQ1 G325R mutation and corresponds well with the severe clinical presentation revealed in some reports. However, the index patient and other mutation carriers were asymptomatic, highlighting potential limitations of risk assessment schemes based on ion channel data.  相似文献   

6.
7.
Hereditary long QT syndrome (LQTS) is associated with ventricular torsade de pointes tachyarrhythmias and sudden cardiac death. Mutations in a cardiac voltage-gated potassium channel, KCNQ1, induce the most frequent variant of LQTS. We identified a KCNQ1 missense mutation, KCNQ1 S277L, in a patient presenting with recurrent syncope triggered by emotional stress (QTc = 528 ms). This mutation is located in the conserved S5 transmembrane region of the KCNQ1 channel. Using in vitro electrophysiological testing in the Xenopus oocyte expression system, the S277L mutation was found to be non-functional and to suppress wild type currents in dominant-negative fashion in the presence and in the absence of the regulatory ß-subunit, KCNE1. In addition, expression of S277L and wild type KCNQ1 with KCNE1 resulted in a shift of the voltage-dependence of activation by − 8.7 mV compared to wild type IKs, indicating co-assembly of mutant and wild type subunits. The electrophysiological phenotype corresponds well with the severe clinical phenotype of the index patient. However, investigation of family members revealed three patients that exhibit asymptomatic QT interval prolongation (QTc = 493-518 ms). In conclusion, this study emphasizes the value of biophysical testing to provide mechanistic evidence for pathogenicity of ion channel mutations identified in LQTS patients. The inconsistent association of the KCNQ1 S277L mutation with the clinical presentation suggests that additional genetic, epigenetic, or environmental factors play a role in defining the individual clinical LQTS phenotype.  相似文献   

8.
Voltage-gated potassium channels are often assembled with accessory proteins which increases their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (KV) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some KV channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (IKs). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of IKs. Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent IKs expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.  相似文献   

9.
Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice. We first reported an S140G mutation of KCNQ1, an alpha subunit of potassium channels, in one Chinese kindred with AF. However, the molecular defects and cellular mechanisms in most patients with AF remain to be identified. We evaluated 28 unrelated Chinese kindreds with AF and sequenced eight genes of potassium channels (KCNQ1, HERG, KCNE1, KCNE2, KCNE3, KCNE4, KCNE5, and KCNJ2). An arginine-to-cysteine mutation at position 27 (R27C) of KCNE2, the beta subunit of the KCNQ1-KCNE2 channel responsible for a background potassium current, was found in 2 of the 28 probands. The mutation was present in all affected members in the two kindreds and was absent in 462 healthy unrelated Chinese subjects. Similar to KCNQ1 S140G, the mutation had a gain-of-function effect on the KCNQ1-KCNE2 channel; unlike long QT syndrome-associated KCNE2 mutations, it did not alter HERG-KCNE2 current. The mutation did not alter the functions of the HCN channel family either. Thus, KCNE2 R27C is a gain-of-function mutation associated with the initiation and/or maintenance of AF.  相似文献   

10.
Congenital long QT syndrome is characterized by a prolongation of ventricular repolarization and recurrent episodes of life-threatening ventricular tachyarrhythmias, often leading to sudden death. We previously identified a missense mutation F275S located within the S5 transmembrane domain of the KCNQ1 ion channel in a Chinese family with long QT syndrome. We used oocyte expression of the KCNQ1 polypeptide to study the effects of the F275S mutation on channel properties. Expression of the F275 mutant, or co-expression with the wild-type S275 polypeptide, significantly decreased channel current amplitudes. Moreover, the F275S substitution decreased the rates of channel activation and deactivation. In transfected HEK293 cells fluorescence microscopy revealed that the F275S mutation perturbed the subcelluar localization of the ion channel. These results indicate that the F275S KCNQ1 mutation leads to impaired polypeptide trafficking that in turn leads to reduction of channel ion currents and altered gating kinetics.  相似文献   

11.
Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive syndrome characterised by profound congenital sensorineural deafness and prolongation of the QT interval on the electrocardiogram, representing abnormal ventricular repolarisation. In a study of ten British and Norwegian families with JLNS, we have identified all of the mutations in the KCNQ1 gene, including two that are novel. Of the nine mutations identified in this group of 10 families, five are nonsense or frameshift mutations. Truncation of the protein proximal to the recently identified C-terminal assembly domain is expected to preclude assembly of KCNQ1 monomers into tetramers and explains the recessive inheritance of JLNS. However, study of a frameshift mutation, with a dominant effect phenotypically, suggests the presence of another assembly domain nearer to the N-terminus.  相似文献   

12.
The KCNQ gene family comprises voltage-gated potassium channels expressed in epithelial tissues (KCNQ1, KCNQ5), inner ear structures (KCNQ1, KCNQ4) and the brain (KCNQ2-5). KCNQ4 is expressed in inner and outer hair cells of the inner ear where it determines electrical excitability. Accordingly, loss of function mutations of the KCNQ4 gene cause hearing loss. Several K+ channels including the closely related KCNQ1/KCNE1 channel are regulated by the serum- and glucocorticoid-inducible kinase (SGK) family. The present study utilized the Xenopus oocyte system to explore effects of SGK isoforms on KCNQ4 mediated K(+)-currents: KCNQ4 channels activated in a voltage dependent manner with half maximal activation at -10 mV. The peak channel activity was significantly increased by prepulsing. Coexpression of wild type SGK1 but not coexpression of the inactive mutant (K127N)SGK1 significantly increased current amplitudes (by 67 %) and significantly increased the resting potential of KCNQ4 expressing oocytes. Here we describe for the first time a prepulse dependence of KCNQ4 channels with increased currents after hyperpolarizing prepulses. Coexpression of SGK1 significantly attenuated the effect of prepulsing on peak currents. Mutation of Ser to Asp or Ala in the putative phosphorylation consensus sequence in KCNQ4 significantly decreased the sensitivity to SGK1-coexpression. In conclusion, SGK1 regulates current amplitudes and kinetic properties of KCNQ4 channel activity, an effect sensitive to mutations in the SGK1 consensus sequence of the channel.  相似文献   

13.
The K+ channel KCNQ1 (KVLQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes. Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR. Received: 13 December 2000/Revised: 30 March 2001  相似文献   

14.
KCNQ1 voltage-gated K(+) channels assemble with the family of KCNE type I transmembrane peptides to afford membrane-embedded complexes with diverse channel gating properties. KCNQ1/KCNE1 complexes generate the very slowly activating cardiac I(Ks) current, whereas assembly with KCNE3 produces a constitutively conducting complex involved in K(+) recycling in epithelia. To determine whether these two KCNE peptides influence voltage sensing in KCNQ1 channels, we monitored the position of the S4 voltage sensor in KCNQ1/KCNE complexes using cysteine accessibility experiments. A panel of KCNQ1 S4 cysteine mutants was expressed in Xenopus oocytes, treated with the membrane-impermeant cysteine-specific reagent 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent accessibility of each mutant was determined. Of these S4 cysteine mutants, three (R228C, G229C, I230C) were modified by MTSET only when KCNQ1 was depolarized. We then employed these state-dependent residues to determine how assembly with KCNE1 and KCNE3 affects KCNQ1 voltage sensor equilibrium and equilibration rates. In the presence of KCNE1, MTSET modification rates for the majority of the cysteine mutants were approximately 10-fold slower, as was recently reported to indicate that the kinetics of the KCNQ1 voltage sensor are slowed by KCNE1 (Nakajo, K., and Y. Kubo. 2007 J. Gen. Physiol. 130:269-281). Since MTS modification rates reflect an amalgam of reagent accessibility, chemical reactivity, and protein conformational changes, we varied the depolarization pulse duration to determine whether KCNE1 slows the equilibration rate of the voltage sensors. Using the state-dependent cysteine mutants, we determined that MTSET modification rates were essentially independent of depolarization pulse duration. These results demonstrate that upon depolarization the voltage sensors reach equilibrium quickly in the presence of KCNE1 and the slow gating of the channel complex is not due to slowly moving voltage sensors. In contrast, all cysteine substitutions in the S4 of KCNQ1/KCNE3 complexes were freely accessible to MTSET independent of voltage, which is consistent with KCNE3 shifting the voltage sensor equilibrium to favor the active state at hyperpolarizing potentials. In total, these results suggest that KCNE peptides differently modulate the voltage sensor in KCNQ1 K(+) channels.  相似文献   

15.
The heterotetrameric K(+)-channel KCNQ1/KCNE1 is expressed in heart, skeletal muscle, liver and several epithelia including the renal proximal tubule. In the heart, it contributes to the repolarization of cardiomyocytes. The repolarization is impaired in ischemia. Ischemia stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase, sensing energy depletion and stimulating several cellular mechanisms to enhance energy production and to limit energy utilization. AMPK has previously been shown to downregulate the epithelial Na(+) channel ENaC, an effect mediated by the ubiquitin ligase Nedd4-2. The present study explored whether AMPK regulates KCNQ1/KCNE1. To this end, cRNA encoding KCNQ1/KCNE1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKβ1 + AMPKγ1), of the constitutively active (γR70Q)AMPK (α1β1γ1(R70Q)), of the kinase dead mutant (αK45R)AMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. KCNQ1/KCNE1 activity was determined in two electrode voltage clamp experiments. Moreover, KCNQ1 abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced KCNQ1/KCNE1-mediated currents and reduced KCNQ1 abundance in the cell membrane. Similarly, Nedd4-2 decreased KCNQ1/KCNE1-mediated currents and KCNQ1 protein abundance in the cell membrane. Activation of AMPK in isolated perfused proximal renal tubules by AICAR (10 mM) was followed by significant depolarization. In conclusion, AMPK is a potent regulator of KCNQ1/KCNE1.  相似文献   

16.
Long QT syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and potentially life-threatening arrhythmias. Mutations in 12 different genes have been associated with LQTS. Here we describe a patient with LQTS who has a mutation in KCNQ1 as well as a polymorphism in KCNH2. The proband (MMRL0362), a 32-year-old female, exhibited multiple ventricular extrasystoles and one syncope. Her ECG (QT interval corrected for heart rate (QTc) = 518ms) showed an LQT2 morphology in leads V4-V6 and LQT1 morphology in leads V1-V2. Genomic DNA was isolated from lymphocytes. All exons and intron borders of 7 LQTS susceptibility genes were amplified and sequenced. Variations were detected predicting a novel missense mutation (V110I) in KCNQ1, as well as a common polymorphism in KCNH2 (K897T). We expressed wild-type (WT) or V110I Kv7.1 channels in CHO-K1 cells cotransfected with KCNE1 and performed patch-clamp analysis. In addition, WT or K897T Kv11.1 were also studied by patch clamp. Current-voltage (I-V) relations for V110I showed a significant reduction in both developing and tail current densities compared with WT at potentials >+20 mV (p < 0.05; n = 8 cells, each group), suggesting a reduction in IKs currents. K897T- Kv11.1 channels displayed a significantly reduced tail current density compared with WT-Kv11.1 at potentials >+10 mV. Interestingly, channel availability assessed using a triple-pulse protocol was slightly greater for K897T compared with WT (V0.5 = -53.1 ± 1.13 mV and -60.7 ± 1.15 mV for K897T and WT, respectively; p < 0.05). Comparison of the fully activated I-V revealed no difference in the rectification properties between WT and K897T channels. We report a patient with a loss-of-function mutation in KCNQ1 and a loss-of-function polymorphism in KCNH2. Our results suggest that a reduction of both IKr and IKs underlies the combined LQT1 and LQT2 phenotype observed in this patient.  相似文献   

17.
The voltage-gated potassium channel KCNQ1 associates with the small KCNE1 subunit to form the cardiac IKs delayed rectifier potassium current and mutations in both genes can lead to the long QT syndrome. KCNQ1 can form functional homotetrameric channels, however with drastically different biophysical properties compared to heteromeric KCNQ1/KCNE1 channels. We analyzed gating and conductance of these channels expressed in Xenopus oocytes using the two-electrode voltage-clamp and the patch-clamp technique and high extracellular potassium (K) and rubidium (Rb) solutions. Inward tail currents of homomeric KCNQ1 channels are increased about threefold upon substitution of 100 mM potassium with 100 mM rubidium despite a smaller rubidium permeability, suggesting an effect of rubidium on gating. However, the kinetics of tail currents and the steady-state activation curve are only slightly changed in rubidium. Single-channel amplitude at negative voltages was estimated by nonstationary noise analysis, and it was found that rubidium has only a small effect on homomeric channels (1.2-fold increase) when measured at a 5-kHz bandwidth. The apparent single-channel conductance was decreased after filtering the data at lower cutoff frequencies indicative of a relatively fast "flickery/block" process. The relative conductance in rubidium compared to potassium increased at lower cutoff frequencies (about twofold at 10 Hz), suggesting that the main effect of rubidium is to decrease the probability of channel blockage leading to an increase of inward currents without large changes in gating properties. Macroscopic inward tail currents of heteromeric KCNQ1/KCNE1 channels in rubidium are reduced by about twofold and show a pronounced sigmoidal time course that develops with a delay similar to the inactivation process of homomeric KCNQ1, and is indicative of the presence of several open states. The single channel amplitude of heteromers is about twofold smaller in rubidium than in potassium at a bandwidth of 5 kHz. Filtering at lower cutoff frequencies reduces the apparent single-channel conductance, the ratio of the conductance in rubidium versus potassium is, however, independent of the cutoff frequency. Our results suggest the presence of a relatively rapid process (flicker) that can occur almost independently of the gating state. Occupancy by rubidium at negative voltages favors the flicker-open state and slows the flickering rate in homomeric channels, whereas rubidium does not affect the flickering in heteromeric channels. The effects of KCNE1 on the conduction properties are consistent with an interaction of KCNE1 in the outer vestibule of the channel.  相似文献   

18.
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.  相似文献   

19.
All five members of the KCNE beta-subunit family are capable of modulating the KCNQ1 potassium current. We have previously published that the murine variant of KCNE4 inhibits the human KCNQ1 current [J. Physiol. 542 (2002) 119]. Recently, this finding has been challenged by Teng et al., stating that the human variant of KCNE4 does not attenuate the KCNQ1 current but does slightly modulate the activation kinetics of the channel after expression in Xenopus laevis oocytes [Biochem. Biophys. Res. Commun. 303 (2003) 808]. In the present study, a detailed investigation on the ability of human and murine KCNE4 to affect either human or murine KCNQ1 currents has been performed. We find that the hKCNE4 subunit drastically inhibits the hKCNQ1 current after expression in X. laevis oocytes. This inhibitory effect is also observed for both hKCNE4 and mKCNE4 when either of these subunits is co-expressed with mKCNQ1. Analyses of the current properties of hKCNQ1 revealed that activation kinetics are independent of the presence of hKCNE4. hKCNE4 has, however, the ability to prevent the inactivation observed for the KCNQ1 current. Based upon previous studies and the present results, it is concluded that both hKCNE4 and mKCNE4 have a drastic inhibitory impact on both hKCNQ1 and mKCNQ1 currents.  相似文献   

20.
Modulation of voltage-gated potassium (KV) channels by the KCNE family of single transmembrane proteins has physiological and pathophysiological importance. All five KCNE proteins (KCNE1–KCNE5) have been demonstrated to modulate heterologously expressed KCNQ1 (KV7.1) with diverse effects, making this channel a valuable experimental platform for elucidating structure–function relationships and mechanistic differences among members of this intriguing group of accessory subunits. Here, we specifically investigated the determinants of KCNQ1 inhibition by KCNE4, the least well-studied KCNE protein. In CHO-K1 cells, KCNQ1, but not KCNQ4, is strongly inhibited by coexpression with KCNE4. By studying KCNQ1-KCNQ4 chimeras, we identified two adjacent residues (K326 and T327) within the extracellular end of the KCNQ1 S6 segment that determine inhibition of KCNQ1 by KCNE4. This dipeptide motif is distinct from neighboring S6 sequences that enable modulation by KCNE1 and KCNE3. Conversely, S6 mutations (S338C and F340C) that alter KCNE1 and KCNE3 effects on KCNQ1 do not abrogate KCNE4 inhibition. Further, KCNQ1-KCNQ4 chimeras that exhibited resistance to the inhibitory effects of KCNE4 still interact biochemically with this protein, implying that accessory subunit binding alone is not sufficient for channel modulation. These observations indicate that the diverse functional effects observed for KCNE proteins depend, in part, on structures intrinsic to the pore-forming subunit, and that distinct S6 subdomains determine KCNQ1 responses to KCNE1, KCNE3, and KCNE4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号