首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alpha-chymase is an efficient angiotensin (AT) converting enzyme, selectively hydrolyzing AT I at Phe8 to generate bioactive AT II, which can promote cardiac hypertrophy, vascular stenosis, and hypertension. Some related enzymes, such as rat beta-chymase 1, are much less selective, destroying AT by cleaving at Tyr4. Comparisons of chymase structure and activity led to speculation that interaction between AT and the side chain of Lys40 or Arg143 accounts for the human enzyme's marked preference for Phe8 over Tyr4. To test these hypotheses, we compared AT hydrolysis by wild-type chymase with that by mutants changing Lys40 or Arg143 to neutral residues. Lys40 was exchanged for alanine, the residue found in canine alpha- and rat beta-chymase 1, the latter being dramatically less selective for hydrolysis at Phe8. Arg143 was exchanged for glutamine found in rat beta-chymase 1. The Lys40Ala mutant is a dog-like enzyme retaining strong preference for Phe8 but with Tyr4 hydrolytic rates enhanced 16-fold compared to wild-type human enzyme. Thus, of 40 residues mismatched between dog and human enzymes, a single residue accounts for most of the difference in specificity between them. The Arg143Gln mutant, contrary to prediction, remains highly Phe8-selective. Therefore, Lys40, but not Arg143, contributes to human chymase's remarkable preference for AT II generation over destruction.  相似文献   

2.
The ability to convert angiotensin (Ang) I to Ang II was compared between human alpha-chymase and two mouse beta-chymases, mouse mast cell protease (mMCP)-1 and mMCP-4. Human chymase hydrolyzed Ang I to produce Ang II without further degradation. mMCP-1 similarly generated Ang II from Ang I in a time-dependent manner and the formation of the fragment other than Ang II was marginal. In contrast, mMCP-4 hydrolyzed Ang I at two sites, Tyr(4)-Ile(5) and Phe(8)-His(9), with Ang II formation being tentative. Consistently, mMCP-4 but not human chymase hydrolyzed Ang II and mMCP-1 showed little hydrolytic activity against Ang II. These data suggest that not only human chymase but also mMCP-1 might possess a physiological role in Ang II formation. Our findings also imply that the Ang-converting activity of chymase may not be related to the categorization of chymase into alpha- or beta-type based on their primary structure.  相似文献   

3.
Although chymases are known to exhibit species differences in regard to angiotensin (Ang) II generation and degradation, their properties have never been compared under the same experimental conditions. We analyzed the processing of Ang I by chymases of a variety of species (human chymase, dog chymase, hamster chymase-1, rat mast cell protease-1 [rMCP-1], mouse mast cell protease-4 [mMCP-4]) at physiological ionic strength and under neutral pH conditions. Human chymase generated Ang II from Ang I without further degradation, whereas the chymases of other species generated Ang II, followed by degradation at the Tyr4-Ile5 site in a time-dependent manner. Kinetic analysis showed that in terms of Ang II generating activity (analyzed by cleavage of the Phe8-His9 bond using the model peptide Ang(5-10), Ile5-His6-Pro7-Phe8-His9-Leu10), the chymases ranked as follows: dog > human > hamster > mouse > rat (kcat/Km: 18, 11, 0.69, 0.059, 0.030 microM-1min-1), and that in terms of Ang II degrading activity (i.e., cleavage of the Tyr4-Ile5 bond of Ang II), the order was hamster > rat > mouse > dog (kcat/Km: 5.4, 4.8, 0.39, 0.29 microM-lmin-1). These results suggest species differences in the contribution of chymases to local Ang II generation and degradation.  相似文献   

4.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

5.
Chymases are mast cell serine proteases with chymotrypsin-like primary substrate specificity. Amino acid sequence comparisons of alpha-chymases from different species indicated that certain rodent alpha-chymases have a restricted S1 pocket that could only accommodate small amino acids, i.e. they may, despite being classified as chymases, in fact display elastase-like substrate specificity. To explore this possibility, the alpha-chymase, rat mast cell protease 5 (rMCP-5), was produced as a proenzyme with a His6 purification tag and an enterokinase-susceptible peptide replacing the natural propeptide. After removal of the purification tag/enterokinase site by enterokinase digestion, rMCP-5 bound the serine-protease-specific inhibitor diisopropyl fluorophosphate, showing that rMCP-5 was catalytically active. The primary specificity was investigated with chromogenic substrates of the general sequence succinyl-Ala-Ala-Pro-X-p-nitroanilide, where the X was Ile, Val, Ala, Phe or Leu. The activity was highest toward substrates with Val or Ala in the P1 position, whereas low activity toward the peptide with a P1 Phe was observed, indicating that the substrate specificity of rMCP-5 indeed is elastase-like. The extended substrate specificity was examined utilizing a phage-displayed random nonapeptide library. The preferred cleavage sequence was resolved as P4-(Gly/Pro/Val), P3-(Leu/Val/Glu), P2-(Leu/Val/Thr), P1-(Val/Ala/Ile), P1'-(Xaa), and P2'-(Glu/Leu/Asp). Hence, the extended substrate specificity is similar to human chymase in most positions except for the P1 position. We conclude that the rat alpha-chymase has converted to elastase-like substrate specificity, perhaps associated with an adoption of new biological targets, separate from those of human alpha-chymase.  相似文献   

6.
7.
To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the alpha clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig alpha-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by alpha1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster alpha-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase.  相似文献   

8.
Mast cells of the rat intestinal mucosa express three chymotryptic enzymes named rMCP-2, -3 and 4. rMCP-2, the most abundant of these enzymes, has been shown to increase the permeability of the intestinal epithelium, most likely by cleavage of cell adhesion and junction proteins and thereby play a role in intestinal parasite clearance. However, no target for this effect has yet been identified. To address this question we here present its extended cleavage specificity. Phage display analysis showed that it is a chymase with a specificity similar to the corresponding enzyme in mice, mMCP-1, with a preference for Phe or Tyr in the P1 position, and a general preference for aliphatic amino acids both upstream and downstream of the cleavage site. The consensus sequence obtained from the phage display analysis was used to screen the rat proteome for potential targets. A few of the most interesting candidate substrates were cell adhesion and cell junction molecules. To see if these proteins were also susceptible to cleavage in their native conformation we cleaved 5 different recombinant cell adhesion and cell junction proteins. Three potential targets were identified: the loop 1 of occludin, protocadherin alpha 4 and cadherin 17, which indicated that these proteins were at least partly responsible for the previously observed prominent role of rMCP-2 in mucosal permeability and in parasite clearance.  相似文献   

9.
Activated mast cells release a variety of potent inflammatory mediators including histamine, cytokines, proteoglycans, and serine proteases. The serine proteases belong to either the chymase (chymotrypsin-like substrate specificity) or tryptase (trypsin-like specificity) family. In this report we have investigated the substrate specificity of a recently identified mast cell protease, rat mast cell protease-4 (rMCP-4). Based on structural homology, rMCP-4 is predicted to belong to the chymase family, although rMCP-4 has previously not been characterized at the protein level. rMCP-4 was expressed with an N-terminal His tag followed by an enterokinase site substituting for the native activation peptide. The enterokinase-cleaved fusion protein was labeled by diisopropyl fluorophosphate, demonstrating that it is an active serine protease. Moreover, rMCP-4 hydrolyzed MeO-Suc-Arg-Ala-Tyr-pNA, thus verifying that this protease belongs to the chymase family. rMCP-4 bound to heparin, and the enzymatic activity toward MeO-Suc-Arg-Ala-Tyr-pNA was strongly enhanced in the presence of heparin. Detailed analysis of the substrate specificity was performed using peptide phage display technique. After six rounds of amplification a consensus sequence, Leu-Val-Trp-Phe-Arg-Gly, was obtained. The corresponding peptide was synthesized, and rMCP-4 was shown to cleave only the Phe-Arg bond in this peptide. This demonstrates that rMCP-4 displays a striking preference for bulky/aromatic amino acid residues in both the P1 and P2 positions.  相似文献   

10.
The octapeptide angiotensin II (Ang II) exerts a wide range of effects on the cardiovascular system but has also been implicated in the regulation of cell proliferation, fibrosis, and apoptosis. Ang II is formed by cleavage of Ang I by angiotensin-converting enzyme, but there is also evidence for non-angiotensin-converting enzyme-dependent conversion of Ang I to Ang II. Here we address the role of mast cell proteases in Ang II production by using two different mouse strains lacking mast cell heparin or mouse mast cell protease 4 (mMCP-4), the chymase that may be the functional homologue to human chymase. Ang I was added to ex vivo cultures of peritoneal cells, and the generation of Ang II and other metabolites was analyzed. Activation of mast cells resulted in marked increases in both the formation and subsequent degradation of Ang II, and both of these processes were strongly reduced in heparin-deficient peritoneal cells. In the mMCP-4(-/-) cell cultures no reduction in the rate of Ang II generation was seen, but the formation of Ang-(5-10) was completely abrogated. Addition of a carboxypeptidase A (CPA) inhibitor to wild type cells caused complete inhibition of the formation of Ang-(1-9) and Ang-(1-7) but did not inhibit Ang II formation. However, when the CPA inhibitor was added to the mMCP-4(-/-) cultures, essentially complete inhibition of Ang II formation was obtained. Taken together, the results of this study indicate that mast cell chymase and CPA have key roles in both the generation and degradation of Ang II.  相似文献   

11.
Abstract

Although chymases are known to exhibit species differences in regard to angiotensin (Ang) II generation and degradation, their properties have never been compared under the same experimental conditions. We analyzed the processing of Ang I by chymases of a variety of species (human chymase, dog chymase, hamster chymase-1, rat mast cell protease-1 [rMCP-1], mouse mast cell protease-4 [mMCP-4]) at physiological ionic strength and under neutral pH conditions. Human chymase generated Ang II from Ang I without further degradation, whereas the chymases of other species generated Ang II, followed by degradation at the Tyr4-Ile5 site in a time-dependent manner. Kinetic analysis showed that in terms of Ang II generating activity (analyzed by cleavage of the Phe8-His9 bond using the model peptide Ang, Ile5-His6-Pro7-Phe8-His9-Leu10), the chymases ranked as follows:dog > human > hamster > mouse > rat (kcat/Km: 18, 11, 0.69, 0.059, 0.030 μ M? 1min? 1), and that in terms of Ang II degrading activity (i.e., cleavage of the Tyr4-Ile5 bond of Ang II), the order was hamster > rat > mouse > dog (kcat/Km: 5.4, 4.8, 0.39, 0.29 μ M?1min?1). These results suggest species differences in the contribution of chymases to local Ang II generation and degradation.  相似文献   

12.
We previously reported that mast cell alpha-chymase cleaves and activates progelatinase B (progel B). Outside of cells, progel B is complexed with tissue inhibitor of metalloproteinase (TIMP)-1, which hinders zymogen activation and inhibits activity of mature forms. The current work demonstrates that dog BR mastocytoma cells, HMC-1 cells, and murine bone marrow-derived mast cells secrete TIMP-1 whose electrophoretic profile in supernatants suggests degranulation-dependent proteolysis. Alpha-chymase cleaves uncomplexed TIMP-1, reducing its ability to inhibit gel B, whereas tryptase has no effect. Sequencing of TIMP-1's alpha-chymase-mediated cleavage products reveals hydrolysis at Phe(12)-Cys(13) and Phe(23)-Val(24) in loop 1 and Phe(101)-Val(102) and Trp(105)-Asn(106) in loop 3 of the NH(2)-terminal domain. TIMP-1 in a ternary complex with progel B and neutrophil gelatinase-associated lipocalin is also susceptible to alpha-chymase cleavage, yielding products like those resulting from processing of free TIMP-1. Thus, alpha-chymase cleaves free and gel B-bound TIMP-1. Incubation of the progel B-TIMP-1-neutrophil gelatinase-associated lipocalin complex with alpha-chymase increases gel B activity 2- to 5-fold, suggesting that alpha-chymase activates progel B whether it exists as free monomer or as a complex with TIMP-1. Furthermore, inhibition of alpha-chymase blocks degranulation-induced TIMP-1 processing (absent in alpha-chymase-deficient HMC-1 cells). Purified alpha-chymase processes TIMP-1 in BR supernatants, generating products like those induced by degranulation. In summary, these results suggest that controlled exocytosis of mast cell alpha-chymase activates progel B even in the presence of TIMP-1. This is the first identification of a protease that overcomes inhibition by bound TIMP-1 to activate progel B without involvement of other proteases.  相似文献   

13.
In sensitized individuals birch pollen induces an allergic response characterized by IgE-dependent mast cell degranulation of mediators, such as alpha-chymase and other serine proteases. In birch and other plant pollens, a major allergen is profilin. In mammals, profilin homologues are found in an intracellular form bound to cytoskeletal or cytosolic proteins or in a secreted form that may initiate signal transduction. IgE specific to birch profilin also binds human profilin I. This cross-reactivity between airborne and endogenous proteins may help to sustain allergy symptoms. The current work demonstrates that cultured mast cells constitutively secrete profilin I, which is susceptible to degranulation-dependent proteolysis. Coincubation of chymase-rich BR mastocytoma cells with Ala-Ala-Pro-Phe-chloromethylketone (a chymase inhibitor) blocks profilin cleavage, which does not occur in degranulated HMC-1 mast cells, which are rich in tryptase, but chymase deficient. These data implicate chymase as the serine protease cleaving secreted mast cell profilin. Sequencing of chymase-cleaved profilins reveals hydrolysis at Tyr(6)-Val(7) and Trp(35)-Ala(36) in birch profilin and at Trp(32)-Ala(33) in human profilin, with all sites lying within IgE-reactive epitopes. IgE immunoblotting studies with sera from birch pollen-allergic individuals demonstrate that cleavage by chymase attenuates binding of birch profilin to IgE. Thus, destruction of IgE-binding epitopes by exocytosed chymase may limit further mast cell activation by this class of common plant allergens, thereby limiting the allergic responses in sensitized individuals.  相似文献   

14.
Tumor cells are surrounded by infiltrating inflammatory cells, such as lymphocytes, neutrophils, macrophages, and mast cells. A body of evidence indicates that mast cells are associated with various types of tumors. Although role of mast cells can be directly related to their granule content, their function in angiogenesis and tumor progression remains obscure. This study aims to understand the role of mast cells in these processes. Tumors were chemically induced in BALB/c mice and tumor progression was divided into Phases I, II and III. Phase I tumors exhibited a large number of mast cells, which increased in phase II and remained unchanged in phase III. The expression of mouse mast cell protease (mMCP)-4, mMCP-5, mMCP-6, mMCP-7, and carboxypeptidase A were analyzed at the 3 stages. Our results show that with the exception of mMCP-4 expression of these mast cell chymase (mMCP-5), tryptases (mMCP-6 and 7), and carboxypeptidase A (mMC-CPA) increased during tumor progression. Chymase and tryptase activity increased at all stages of tumor progression whereas the number of mast cells remained constant from phase II to III. The number of new blood vessels increased significantly in phase I, while in phases II and III an enlargement of existing blood vessels occurred. In vitro, mMCP-6 and 7 are able to induce vessel formation. The present study suggests that mast cells are involved in induction of angiogenesis in the early stages of tumor development and in modulating blood vessel growth in the later stages of tumor progression.  相似文献   

15.
On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta1 and IL-1beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.  相似文献   

16.
Chymases, serine proteases exclusively expressed by mast cells, have been implicated in various pathological conditions. However, the basis for these activities is not known, i.e. the in vivo substrate(s) for mast cell chymase has not been identified. In this study we show that mice lacking the chymase mouse mast cell protease 4 (mMCP-4) fail to process pro-matrix metalloprotease 9 (pro-MMP-9) to its active form in vivo, whereas both the pro and active form of MMP-9 was found in tissues of wild type mice. Moreover, the processing of pro-MMP-2 into active enzyme was markedly defective in mMCP-4 null animals. Histological analysis revealed an increase in collagen in the ear tissue of mMCP-4-deficient animals accompanied by increased ear thickness and a higher content of hydroxyproline. Furthermore, both lung and ear tissue from the knock-out animals showed a markedly increased staining for fibronectin. MMP-9 and MMP-2 are known to have a range of important activities, but the mechanisms for their activation in vivo have not been clarified previously. The present study thus indicates a key role for mast cell chymase in the regulation of pro-MMP-2 and -9 activities. Moreover, the results suggest an important role for mast cell chymase in regulating connective tissue homeostasis.  相似文献   

17.
Dog mast cell chymase: molecular cloning and characterization   总被引:5,自引:0,他引:5  
We cloned and characterized a cDNA coding for the complete amino acid sequence of dog mast cell chymase. The cDNA was identified by screening a dog mastocytoma cDNA library with an oligonucleotide probe based on the amino acid sequence of a fragment of dog mastocytoma chymase. The deduced amino acid sequence reveals a putative 21-residue prepropeptide followed by a catalytic domain of 228 residues. The primary structure of the preproenzyme shares features with rat mucosal mast cell chymase (RMCP II), several lymphocyte-associated proteases, and neutrophil cathepsin G. The common characteristics include an apparent activation peptide terminating in glutamic acid, strict conservation of an octapeptide (residues 9-16) in the N-terminal portion of the catalytic domain, and the presence of only six cysteines available for intramolecular disulfide bond formation. However, dog chymase differs in being modified by N-glycosylation. Although the dog chymase catalytic domain exhibits a similar level of sequence identity when compared with both RMCP II and the rat connective tissue mast cell chymase RMCP I (58% and 61%, respectively), the dog enzyme most closely resembles RMCP I in its high predicted net charge (+16) and in the presence of serine at the base of its putative primary substrate binding pocket. The dog chymase differs strikingly from dog mast cell tryptase in the preprosequence and in the structure of the catalytic domain. Therefore, chymase appears not to be closely related to tryptase and may not share a mechanism of activation, even though both enzymes are packaged and released together.  相似文献   

18.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

19.
Three new tripeptidyl chloromethyl ketones, Leu-Leu-XCH2Cl, with X representing Phe, Tyr, or Lys, were synthesized and their potencies to inactivate calpains I and II were compared. They were designed to fulfil the specificity requirement of calpains established recently. When compared in terms of the dose for 50% inactivation, Leu-Leu-PheCH2Cl was the strongest inactivator, being 500-600 times more effective than tosyl-PheCH2Cl and 5-14 times more than N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]agmatine (E-64). The potency toward calpain, either I or II, decreased in the order Phe greater than Tyr greater than Lys derivatives greater than E-64, whereas that toward papain was E-64 greater than Lys greater than Phe greater than Tyr derivatives. From the determined kinetic parameters, the Phe derivative was 18.3 and 16.6 times more effective than E-64 on calpains I and II, respectively. Likewise, the rate of the alkylation reaction by these chloromethyl ketones with calpain I was 2-4 times greater than that with calpain II. Leu-Leu-PheCH2Cl and its N-dansylated product should be useful for highly selective affinity labeling of calpains I and II.  相似文献   

20.
Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI -/- mice. We find that DPPI -/- mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI -/- mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI -/- BMMCs is 25% that of DPPI +/- BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号