首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estimates of contemporary gene flow assessed based on naturally established seedlings provide information much needed for understanding the abilities of forest tree populations to persist under global changes through migration and/or adaptation facilitated by gene exchange among populations. Here, we investigated pollen‐ and seed‐mediated gene flow in two mixed‐oak forest stands (consisting of Quercus robur L. and Q. petraea [Matt.] Liebl.). The gene flow parameters were estimated based on microsatellite multilocus genotypes of seedlings and adults and their spatial locations within the sample plots using models that attempt to reconstruct the genealogy of the seedling cohorts. Pollen and seed dispersal were modelled using the standard seedling neighbourhood model and a modification—the 2‐component seedling neighbourhood model, with the later allowing separation of the dispersal process into local and long‐distance components. The 2‐component model fitted the data substantially better than the standard model and provided estimates of mean seed and pollen dispersal distances accounting for long‐distance propagule dispersal. The mean distance of effective pollen dispersal was found to be 298 and 463 m, depending on the stand, while the mean distance of effective seed dispersal was only 8.8 and 15.6 m, which is consistent with wind pollination and primarily seed dispersal by gravity in Quercus. Some differences observed between the two stands could be attributed to the differences in the stand structure of the adult populations and the existing understory vegetation. Such a mixture of relatively limited seed dispersal with occasional long distance gene flow seems to be an efficient strategy for colonizing new habitats with subsequent local adaptation, while maintaining genetic diversity within populations.  相似文献   

2.
Prevailing directions of seed and pollen dispersal may induce anisotropy of the fine‐scale spatial genetic structure (FSGS), particularly in wind‐dispersed and wind‐pollinated species. To examine the separate effects of directional seed and pollen dispersal on FSGS, we conducted a population genetics study for a dioecious, wind‐pollinated, and wind‐dispersed tree species, Cercidiphyllum japonicum Sieb. et Zucc, based on genotypes at five microsatellite loci of 281 adults of a population distributed over a ca. 80 ha along a stream and 755 current‐year seedlings. A neighborhood model approach with exponential‐power‐von Mises functions indicated shorter seed dispersal (mean = 69.1 m) and much longer pollen dispersal (mean = 870.6 m), effects of dispersal directions on the frequencies of seed and pollen dispersal, and the directions with most frequent seed and pollen dispersal (prevailing directions). Furthermore, the distance of effective seed dispersal within the population was estimated to depend on the dispersal direction and be longest at the direction near the prevailing direction. Therefore, patterns of seed and pollen dispersal may be affected by effective wind directions during the period of respective dispersals. Isotropic FSGS and spatial sibling structure analyses indicated a significant FSGS among the seedlings generated by the limited seed dispersal, but anisotropic analysis for the seedlings indicated that the strength of the FSGS varied with directions between individuals and was weakest at a direction near the directions of the most frequent and longest seed dispersal but far from the prevailing direction of pollen dispersal. These results suggest that frequent and long‐distance seed dispersal around the prevailing direction weakens the FSGS around the prevailing direction. Therefore, spatially limited but directional seed dispersal would determine the existence and direction of FSGS among the seedlings.  相似文献   

3.
Understanding precisely how plants disperse their seeds and pollen in their neighbourhood is a central question for both ecologists and evolutionary biologists because seed and pollen dispersal governs both the rate of spread of an expanding population and gene flow within and among populations. The concept of a 'dispersal kernel' has become extremely popular in dispersal ecology as a tool that summarizes how dispersal distributes individuals and genes in space and at a given scale. In this issue of Molecular Ecology, the study by Moran & Clark (2011) (M&C in the following) shows how genotypic and spatial data of established seedlings can be analysed in a Bayesian framework to estimate jointly the pollen and seed dispersal kernels and finally derive a parentage analysis from a full-probability approach. This approach applied to red oak shows important dispersal of seeds (138 m on average) and pollen (178 m on average). For seeds, this estimate contrasts with previous results from inverse modelling on seed trap data (9.3 m). This research gathers several methodological advances made in recent years in two research communities and could become a cornerstone for dispersal ecology.  相似文献   

4.
Burczyk J  Adams WT  Birkes DS  Chybicki IJ 《Genetics》2006,173(1):363-372
Estimating seed and pollen gene flow in plants on the basis of samples of naturally regenerated seedlings can provide much needed information about "realized gene flow," but seems to be one of the greatest challenges in plant population biology. Traditional parentage methods, because of their inability to discriminate between male and female parentage of seedlings, unless supported by uniparentally inherited markers, are not capable of precisely describing seed and pollen aspects of gene flow realized in seedlings. Here, we describe a maximum-likelihood method for modeling female and male parentage in a local plant population on the basis of genotypic data from naturally established seedlings and when the location and genotypes of all potential parents within the population are known. The method models female and male reproductive success of individuals as a function of factors likely to influence reproductive success (e.g., distance of seed dispersal, distance between mates, and relative fecundity--i.e., female and male selection gradients). The method is designed to account for levels of seed and pollen gene flow into the local population from unsampled adults; therefore, it is well suited to isolated, but also wide-spread natural populations, where extensive seed and pollen dispersal complicates traditional parentage analyses. Computer simulations were performed to evaluate the utility and robustness of the model and estimation procedure and to assess how the exclusion power of genetic markers (isozymes or microsatellites) affects the accuracy of the parameter estimation. In addition, the method was applied to genotypic data collected in Scots pine (isozymes) and oak (microsatellites) populations to obtain preliminary estimates of long-distance seed and pollen gene flow and the patterns of local seed and pollen dispersal in these species.  相似文献   

5.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

6.
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.  相似文献   

7.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

8.
In most plants, the contributions of pollen and seed flow to their genetic structures are generally difficult to disentangle. For typical wind-pollinated and wind-dispersed species Engelhardia roxburghiana in a 20-ha natural forest plot in lower subtropic China, because the prevailing wind directions change during its pollen release and seed dispersal seasons, we could compare its genetic structures in different directions, which could result primarily from pollen or seed flow. Furthermore, because the plot has undergone from an open to a closed canopy stage historically, we also examined forest canopy effects on gene flow in different generations and different directions. Using 522 E. roxburghiana individuals mapped in the plot, our results revealed that greater pollen flow led to biased gene flow in the pollen dispersal-predominant direction (pollen direction), while greater seed flow generated less spatial genetic structure in the seed dispersal-predominant direction (seed direction). The results predicted from generalized additive models indicated that canopy closure enhanced resistance to gene flow from the old generation to the new generation. Analyses by landscape genetic models for the new generation revealed that gene flow associated with pollen direction was more strongly affected by canopy than with seed direction. Our study is new by proposing an alternative way to separate effects of the pollen and seed flow on spatial variation patterns in E. roxburghiana. To our knowledge, our study is also the first attempt to use landscape genetic models to represent canopy effects for different dispersal vectors in spatial scales only up to a few hundred meters.  相似文献   

9.
Degen B  Bandou E  Caron H 《Heredity》2004,93(6):585-591
In this paper, we report a study of the mating system and gene flow of Symphonia globulifera, a hermaphroditic, mainly bird-pollinated tree species with a large geographic distribution in the tropical Americas and Africa. Using three microsatellites, we analysed 534 seeds of 28 open pollinated families and 164 adults at the experimental site 'Paracou' in French Guiana. We observed, compared to other tropical tree species, relatively high values for the effective number of alleles. Significant spatial genetic structure was detected, with trees at distances up to 150 m more genetically similar than expected at random. We estimated parameters of the mating system and gene flow by using the mixed mating model and the TwoGener approach. The estimated multilocus outcrossing rate, tm, was 0.920. A significant level of biparental inbreeding and a high proportion of full-sibs were estimated for the 28 seed arrays. We estimated mean pollen dispersal distances between 27 and 53 m according to the dispersal models used. Although the adult population density of S. globulifera in Paracou was relatively high, the joint estimation of pollen dispersal and density of reproductive trees gave effective density estimates of 1.6 and 1.3 trees/ha. The parameters of the mating system and gene flow are discussed in the context of spatial genetic and demographic structures, flowering phenology and pollinator composition and behaviour.  相似文献   

10.
The comparison between historical estimates of gene flow, using variance in allelic frequencies, and contemporary estimates of gene flow, using parentage assignment, is expected to provide insights into ecological and evolutionary processes at work within and among populations. Genetic variation at six microsatellite loci was used to quantify genetic structure in the insect-pollinated, animal-dispersed, low-density tree Sorbus torminalis L. Crantz, and to derive historical estimates of gene flow. The neighbourhood size and root-mean-squared dispersal distance inferred from seedling genotypes ( N b  = 70 individuals, σ e  = 417 m) were similar to those inferred from adult genotypes ( N b  = 114 individuals, σ e  = 472 m). We also used parentage analyses and a neighbourhood model approach after an evaluation of the statistical properties of this method on simulated data. From our data, we estimated even contributions of seed- and pollen-mediated dispersal to the genetic composition of established seedlings, with both fat-tailed pollen and seed dispersal kernels, and slightly higher mean distance of pollen dispersal (248 m) as compared to seed dispersal (135 m). The resulting contemporary estimate of gene dispersal distance (σ c  = 211 m) was ∼twofold smaller than the historical estimates. Besides different assumptions and statistical nuances of both approaches, this discrepancy is likely to reflect a recent restriction in the scale of gene flow which requires manager's attention in a context of increasing forest fragmentation.  相似文献   

11.
We assessed the pollen and seed dispersal patterns, genetic diversity, inbreeding and spatial genetic structure of Himatanthus drasticus (Apocynaceae), a tree native to the Brazilian Savanna (Cerrado) that is heavily exploited for its medicinal latex. The study was conducted in the Araripe National Forest, Ceará State, Brazil. Within a one-hectare plot, samples were collected from all adult trees, adult trees located in the immediate vicinity of the plot, and seedlings. All sampled individuals were mapped and genotyped using microsatellite markers. High levels of polymorphism and significant levels of inbreeding were found, which indicates that self-fertilisation and mating among relatives occur in this population. Both the adults and seedlings had significant spatial genetic structure up to ~40 m and our results confirmed the occurrence of isolation by distance. Pollen and seeds were dispersed over short distances and immigration of pollen and seeds into the plot was estimated at 13 and 9 %, respectively. Taking into consideration the degree of inbreeding, relatedness, intrapopulation spatial genetic structure and pollen dispersal distance, we recommend collecting seeds from a large number of trees spaced at least 150 m apart to avoid collecting seeds from related individuals and an overlap of pollen pools among seed trees.  相似文献   

12.
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind-pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paranalpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006 m. The average number of effective pollen donors was estimated as 12.6. Mother-trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother-trees ranged from 0.35 to 291 m (with an average of 83 m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50 m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is long-distance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.  相似文献   

13.
Sato T  Isagi Y  Sakio H  Osumi K  Goto S 《Heredity》2006,96(1):79-84
Few studies have analyzed pollen and seed movements at local scale, and genetic differentiation among populations covering the geographic distribution range of a species. We carried out such a study on Cercidiphyllum japonicum; a dioecious broad-leaved tree of cool-temperate riparian forest in Japan. We made direct measurement of pollen and seed movements in a site, genetic structure at the local scale, and genetic differentiation between populations covering the Japanese Archipelago. Parentage analysis of seedlings within a 20-ha study site indicated that at least 28.8% of seedlings were fertilized by pollen from trees outside the study site. The average pollination distance within the study site was 129 m, with a maximum of 666 m. The genotypes of 30% of seedlings were incompatible with those of the nearest female tree, and the maximum seed dispersal distance within the study site was over 300 m. Thus, long-distance gene dispersal is common in this species. The correlation between genetic relatedness and spatial distance among adult trees within the population was not significant, indicating an absence of fine-scale genetic structure perhaps caused by high levels of pollen flow and overlapping seed shadows. Six populations sampled throughout the distribution of C. japonicum in Japan showed significant isolation-by-distance but low levels of genetic differentiation (F(ST) = 0.043), also indicating long-distance gene flow in C. japonicum. Long-distance gene flow had a strong influence on the genetic structure at different spatial scales, and contributes to the maintenance of genetic diversity in C. japonicum.  相似文献   

14.
Insect pollinations of tree species with high-density populations have rarely been studied. Since the density of adults can affect effective pollen dispersal, short-distance pollination, even by insects, may frequently occur in high-density populations. To test this prediction, we investigated pollination patterns in a high-density population of the insect-pollinated canopy tree species Castanopsis sieboldii by paternity analysis using genotypes at 8 microsatellite loci of 145 adult trees and 439 seeds from 11 seed parents in a 4-ha plot. We then explored their genetic effects on the population by calculating other population genetics parameters. Although C. sieboldii has high potential for long-distance dispersal of pollen (as indicated by a fat-tailed dispersal kernel), the cumulative pollination at the local scale was spatially limited and strongly dependent on the distance between parents due to the high density of adults. Genetic diversity estimates for pollen pools accepted by each seed parent converged on a maximum as the effective number of pollen parents increased. The genetic diversity of pollen pool bulked over all the seed parents from inside the plot did not differ from that of the total pollen pools. Therefore, although pollen flow from distant pollen parents may help to maintain the genetic diversity of offspring, pollen parents neighboring seed parents may be the main contributors to the genetic diversity of the offspring at the seed stage.  相似文献   

15.
The importance of dispersal for the maintenance of biodiversity, while long-recognized, has remained unresolved. We used molecular markers to measure effective dispersal in a natural population of the vertebrate-dispersed Neotropical tree, Simarouba amara (Simaroubaceae) by comparing the distances between maternal parents and their offspring and comparing gene movement via seed and pollen in the 50 ha plot of the Barro Colorado Island forest, Central Panama. In all cases (parent-pair, mother-offspring, father-offspring, sib-sib) distances between related pairs were significantly greater than distances to nearest possible neighbours within each category. Long-distance seedling establishment was frequent: 74% of assigned seedlings established > 100 m from the maternal parent [mean = 392 +/- 234.6 m (SD), range = 9.3-1000.5 m] and pollen-mediated gene flow was comparable to that of seed [mean = 345.0 +/- 157.7 m (SD), range 57.6-739.7 m]. For S. amara we found approximately a 10-fold difference between distances estimated by inverse modelling and mean seedling recruitment distances (39 m vs. 392 m). Our findings have important implications for future studies in forest demography and regeneration, with most seedlings establishing at distances far exceeding those demonstrated by negative density-dependent effects.  相似文献   

16.
Pollen flow and population genetic structure among 30 potentially flowering individuals of Neobalanocarpus heimii, a tropical emergent tree, were investigated in a lowland tropical rainforest of Malaysia using microsatellite polymorphism. The 248 offspring in the vicinity of five reproductive trees of the 30 potentially flowering trees were used in paternity analysis for pollen-flow study. Four primer pairs, developed in different species of dipterocarps, were adopted to detect microsatellite polymorphism. Based upon microsatellite polymorphism, pollen flow and seed migration were detected. Pollen-flow events of more than 400 m were observed directly, based on paternity analysis in the study plot. The estimated average mating distance of the five reproductive trees was 524 m. This result suggests that reproduction of this species is mediated by a long-distance pollinator. The haplotypes of some offspring were not compatible with the nearest reproductive tree. Thus, the results suggest that some seeds are dispersed by a seed dispersal vector. Investigation of genetic structure showed significant and negative correlation of genetic relatedness and spatial distances between the 30 potentially flowering trees, but this correlation was weak. We suggest that long-distance gene flow and seed migration are responsible for the poorly developed genetic structure of this species.  相似文献   

17.
花粉介导的转Bt基因棉花田间基因流监测   总被引:1,自引:0,他引:1  
采用花粉粒染色法对转Bt基因棉的花粉漂移距离和强度进行了观测,并应用PCR法检测转Bt基因棉的基因流频率.花粉粒染色法监测结果表明:同株异花间的花粉散布频率显著高于异株异花间(P<0.01);靠近转Bt基因棉花粉染色区1 m处的平均花粉散布频率,在东、南、西、北4个方向分别为44.8%、48.9%、57.1%和21.5%,但随着距转基因棉田距离的增大,4个方向的平均花粉散布频率都呈下降趋势.PCR结果的统计分析表明,在25m内,花粉散布距离和方向对基因流频率有极显著影响(P<0.01),随着距转基因棉田距离的增大,基因流频率呈下降趋势,最远距离为25 m时的最高基因流频率为2.0%.  相似文献   

18.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

19.
Trees' long lifespan, long-distance dispersal abilities and high year-to-year variability in fecundity are thought to have pervasive consequences for the demographic and genetic structure of recruited seedlings. However, we still lack experimental studies quantifying the respective roles of spatial processes such as restricted seed and pollen dispersal and temporal processes such as mast seeding on patterns of regeneration. Dynamics of European beech (Fagus sylvatica) seedling recruitment was monitored in three plots from 2004 to 2006. Six polymorphic microsatellite genetic markers were used to characterize seedlings and their potential parents in a 7.2-ha stand. These seedlings were shown to result from 12 years of recruitment, with one predominant year of seedling recruitment in 2002 and several years without significant recruitment. Using a spatially explicit mating model based on parentage assignment, short average dispersal distances for seed (δ(s) = 10.9 m) and pollen (43.7 m < δ(p) <57.3 m) were found, but there was also a non-negligible immigration rate from outside the plot (m(s) = 20.5%; 71.6% < m(p) < 77.9%). Hierarchical analyses of seedling genetic structure showed that (i) most of the genetic variation was within plots; (ii) the genetic differentiation among seedling plots was significant (F(ST) = 2.6%) while (iii) there was no effect of year-to-year seed rain variation on genetic structure. In addition, no significant effect of genetic structure on mortality was detected. The consequences of these results for the prediction of population dynamics at ecological timescales are discussed.  相似文献   

20.
Mating systems define the mode of gene transmission across generations, helping to determine the amount and distribution of genetic variation within and among populations of plant species. A hierarchical analysis of Mediterranean maritime pine mating system (61 mother trees from 24 plots, clustered in three populations) was used to identify factors affecting mating patterns and to fit pollen dispersal kernels. Levels of ovule and seed abortion, multi- and single-locus outcrossing rates and correlated paternity were estimated from progeny arrays and correlated with ecological stand variables and biometric tree measures. Pollen dispersal kernels were fitted using TwoGener and KinDist indirect methods and simulations were carried out to identify relevant factors affecting correlated paternity. Maritime pine showed high outcrossing rates (t(m) and t(s) approximately 0.96) and relatively low levels of correlated paternity [an r(p) of 0.018 (Ritland's estimate) or 0.048 (Hardy's estimate)], although higher than in other anemophilous tree species. Mating system parameters had high variation at the single-tree level (99-100%) but no stand or population effect was detected. At the single-tree level, outcrossing rates were correlated with tree (diameter and height) and crown size. In addition, correlated paternity showed a significant negative correlation with tree height, height to crown base and height to the largest crown width, probably reflecting the importance of the trees' 'ecological neighborhoods'. Indirectly estimated pollen dispersal kernels were very leptokurtic (exponential-power distributions with beta<0.5), with mean dispersal distances from 78.4 to 174.4 m. Fitted dispersal kernels will be useful in building explicit simulation models that include dispersal functions, and which will contribute to current conservation and management programs for maritime pine. Nevertheless, the numerical simulations showed that restricted dispersal, male fertility and phenological overlap could only partially explain the observed levels of correlated paternity; so other factors may also be relevant for the management of this valuable forest tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号