首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the concentration of cytosolic free calcium were recorded microfluorometrically in rat vascular smooth muscle cells in primary culture and loaded with quin-2. The effects of caffeine and high extracellular K+ on the release of calcium from the intracellular storage sites were determined. In the absence of extracellular calcium, both the depolarization of plasma membrane with excess extracellular K+ and the application of caffeine induced a transient and dose-dependent elevation of the cytosolic free calcium concentration, with durations of 4 and 2 min, respectively. Transient elevations of calcium repeatedly appeared in response to both repetitive depolarization (100 mM K+) and caffeine (10 mM) applications with progressive reductions in peak levels. In either case, the fifth or later treatments induced little or no rise in levels of the cytosolic calcium. The amount of released calcium induced by high K+ depolarization after (n-1) time applications (1 less than or equal to n less than or equal to 5) of caffeine was equal to that induced by the n-th application of caffeine. The amount of released calcium induced by caffeine after (n-1) time exposures (1 less than or equal to n less than or equal to 5) to K+ depolarization was equal to that observed during the n-th exposure to K+ depolarization. These results indicate that caffeine- and depolarization-sensitive intracellular calcium storage sites may be identical and that caffeine and K+, in optimal concentrations, will release an equal amount of calcium from the same storage site in cultured arterial smooth muscle cells, irrespective of the amount of stored calcium.  相似文献   

2.
Calcium waves sweep across most eggs of the deuterostome lineage at fertilization. The precise timing of the initiation and propagation of a fertilization calcium wave has been best studied in sea urchin embryos, since the rapid depolarization caused by sperm egg fusion can be detected as a calcium influx using confocal imaging of calcium indicator dyes. The time between sperm egg fusion and the first sign of the calcium increase that constitutes the calcium wave is comparable to the time it takes for the wave to sweep across the egg, once initiated. The latency and rise time of the calcium response is sensitive to inhibitors of the InsP3 signalling pathway, as reported previously. Using calcium green dextran and confocal microscopy, we confirm that the propagation time of the calcium wave is lengthened and that initiation of the calcium wave involves activation of calcium release at hot spots that may represent clusters of calcium release channels, as has been seen in other cell types.  相似文献   

3.
Jurkat lymphoblasts were stimulated by a monoclonal antibody against the CD3 membrane antigen and the evoked calcium signal was followed by the intracellular fluorescent calcium indicator indo-1. The technique applied allowed us to separately investigate the stimulus-induced intracellular calcium release and the calcium-influx pathways, respectively. In the same cells membrane potential was estimated by the fluorescent dye diS-C3-(5). The resting membrane potential of Jurkat lymphoblasts under normal conditions was between -55 and -60 mV. Membrane depolarization, obtained by increasing external K+ concentration, removing external Cl-, or by increasing the Na+/K+ leak permeability with gramicidin or PCMBS, did not induce calcium influx in the resting cells and did not influence the CD3 receptor-mediated internal calcium release, while strongly inhibited the receptor-mediated calcium influx pathway. Half-maximum inhibition of this calcium influx was observed at membrane potential values of about -35 to -40 mV and this inhibition did not depend on the external calcium concentration varied between 5 and 2500 microM. Membrane hyperpolarization by valinomycin did not affect either component of the calcium signal. The observed selective inhibition of the receptor-operated calcium influx pathway by membrane depolarization is probably an important modulator of calcium-dependent cell stimulation.  相似文献   

4.
The effect of micromolar intracellular levels of ryanodine was tested on the myoplasmic free calcium concentration ([Ca(2+)](i)) measured from a portion of isolated mouse skeletal muscle fibers voltage-clamped at -80 mV. When ryanodine-injected fibers were transiently depolarized to 0 mV, the early decay phase of [Ca(2+)](i) upon membrane repolarization was followed by a steady elevated [Ca(2+)](i) level. This effect could be qualitatively well simulated, assuming that ryanodine binds to release channels that open during depolarization and that ryanodine-bound channels do not close upon repolarization. The amplitude of the postpulse [Ca(2+)](i) elevation depended on the duration of the depolarization, being hardly detectable for pulses shorter than 100 ms, and very prominent for duration pulses of seconds. Within a series of consecutive pulses of the same duration, the effect of ryanodine produced a staircase increase in resting [Ca(2+)](i), the slope of which was approximately twice larger for depolarizations to 0 or +10 mV than to -30 or -20 mV. Overall results are consistent with the "open-locked" state because of ryanodine binding to calcium release channels that open during depolarization. Within the voltage-sensitive range of calcium release, increasing either the amplitude or the duration of the depolarization seems to enhance the fraction of release channels accessible to ryanodine.  相似文献   

5.
Temporal changes in the phosphorylation level of synaptosomal phosphoproteins following depolarization of synaptosomes were investigated under conditions restricting calcium influx. High-K+ depolarization in media of low [Na+]o (32 mM during preincubation and depolarization) at pH 6.5 resulted in a pronounced fall in the cytosolic free calcium concentration transient, and in a reduction in the initial K(+)-stimulated 45Ca2+ uptake and endogenous acetylcholine release relative to the values obtained with control synaptosomes (preincubated and depolarized in Na(+)-based media). This reduction was paralleled by a decrease in the rate of dephosphorylation of the synaptosomal protein P96. A slower dephosphorylation of P96 also was observed on exposure to 20 microM veratridine at 0.5 mM external calcium. Our results indicate that, similar to synapsin I phosphorylation, P96 dephosphorylation shows a graded response to the amount of calcium entering the presynaptic terminal. Depolarization of synaptosomes under conditions restricting the influx of calcium revealed a transient dephosphorylation (reversed within 10 s) of the phosphoprotein P65. The possible significance of this finding to the process of neurotransmitter release is discussed.  相似文献   

6.
The effects of calcium release blocker dantrolene was tested on electrically evoked twitches and on contractures induced by potassium depolarization, by acetylcholine or caffeine. It was shown that the first: developmental, stage of potassium or acetylcholine contracture is inhibited by dantrolene and is not influenced by calcium free medium, therefore we may interpret it as based on a "voltage-dependent Ca release" (VDCR) mechanism of activation, whereas depolarization directly opens the rhyanodin receptor calcium channels. On the contrary, the next stage: the long-lasting plateau of contracture, is directly dependent on external Ca2+ and inhibited by dantrolene, and therefore can be described as "calcium induced Ca-release" (CICR) activation mechanism. In this case stored calcium is also released by rhyanodine receptors, although by means of entering the extracellular Ca2+. Finally, the last stage of low amplitude is not influenced by dantrolene nor by calcium-free medium. Therefore the activation of contraction on this stage is not based on the Ca2+ release through the rhyanodin receptor calcium channels.  相似文献   

7.
A new Ca-voltage hypothesis for neurotransmitter release is proposed. Accordingly, membrane depolarization has two roles. To increase membrane conductance to calcium and to activate a molecule S from an inactive form T. Only the active form S binds calcium ions to start the chain of events leading to release. Four lines of experiments are described to support this hypothesis. Disassociation between Ca2+ entry and transmitter release. Loading of the terminal with Ca2+ and obtaining release with little additional entry of Ca2+. Measurements of kinetics of release. Modulation of release by changes in membrane potential. Recent criticism as to the validity of the experimental techniques used in the first two lines of experiments is analyzed and rejected.  相似文献   

8.
Previous work has demonstrated that the neurotoxin leptinotarsin elicits release of neurotransmitter from mammalian nerve terminals, and it has been suggested that the toxin may act either as a direct agonist of voltage-sensitive calcium channels in these terminals (Crosland et al., 1984) or as a calcium ionophore (Madeddu et al., 1985a,b). Preliminary studies (Yeager et al., 1987) demonstrated that leptinotarsin also evokes transmitter release from isolated elasmobranch electric organ nerve terminals. We now report further investigations of the effects of leptinotarsin in this system. The action of the toxin is saturable, releasing about the same small fraction of total transmitter as that released by depolarization. An upper limit for the concentration for half maximal release is estimated to be 4 nM. Leptinotarsin-evoked transmitter release exhibits behavior very similar to depolarization-evoked release with respect to dependence on Ca2+, Ba2+, and Sr2+ and blockade by Co2+, Cd2+, and trifluoperazine. Leptinotarsin also promotes the uptake of calcium into synaptosomes to a degree similar to that caused by depolarization by K+. The binding of leptinotarsin to nerve terminals is probably Ca2+ dependent and receptor mediated. Taken together with the behavior of leptinotarsin-evoked release in other preparations, these results are consistent with the hypothesis that this toxin acts by opening a presynaptic calcium channel. However, the possibility that leptinotarsin is a calcium ionophore cannot be excluded.  相似文献   

9.
The effect of extracellular calcium on the release of calcitonin gene-related peptide (CGRP) induced by electrical field stimulation from enteric nerves of isolated rat ileum was studied; the effect of high potassium, veratridine and caffeine was also examined. Release of endogenous substance P from enteric nerves was also measured for comparison. Electrical field stimulation (10 Hz, 0.3 ms for 2 min) of the ileum preparation caused a significant (P less than 0.001) increase in the release of CGRP and substance P from enteric nerves. The evoked, but not the basal, release of both CGRP and substance P was inhibited in the presence of tetrodotoxin (TTX). The release of CGRP and substance P induced by electrical stimulation was abolished in Ca2+-free medium containing CDTA and also in normal medium containing the calcium channel blocker cadmium chloride (CdCl2), with no change in the level of the basal release of both peptides. However, potassium depolarization (76 and 110 mM) failed to evoke an increase in the release of endogenous CGRP, although it did cause an increase in the release can be induced by mobilization of calcium from intracellular Ca2+ stores. Veratridine, on the other hand, did not cause an increase in CGRP release, although substance P and VIP release was induced by veratridine from the same preparations. The results of the present study have demonstrated that CGRP release from enteric nerves requires the presence of extracellular calcium but, unlike substance P and most other transmitters reported to show calcium-dependent release, potassium depolarization does not induce CGRP release from enteric nerves of rat ileum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: The dipeptide carnosine (β-alanyl-L-histidine) has been proposed as a neurotransmitter in the mammalian olfactory pathway. Therefore, the efflux of in vivo -synthesized [14C]carnosine from mouse olfactory bulb synaptosomes was investigated. Carnosine was found to be released from the olfactory bulb synaptosomes by two mechanisms. The first is a slow spontaneous process that is independent of depolarization. The rate of this release was doubled in the presence of 1 m M external carnosine. Release by the second mechanism was markedly stimulated in the presence of calcium by depolarization with either 60 m M K+ or 300 μ M veratridine. Omission of calcium abolished the stimulatory effect of both of these agents. Further, blockage of the veratridine-induced depolarization by tetrodotoxin also inhibited carnosine release. These results are consistent with the hypothesis that carnosine acts as a neurotransmitter in the mouse olfactory pathway.  相似文献   

11.
Abstract: To compare the time course of different mechanisms of chemically stimulated release, amperometric detection of dopamine was carried out at single PC12 cells. The rapid response of carbon fiber microelectrodes allowed the detection of single exocytotic events, thus providing time-resolved information about the dynamics of stimulated release, in particular the latency between the stimulation of a cell and the secretion of catecholamines. On rapid depolarization of the cell membrane caused by application of 105 m M K+, almost immediate (6 ± 1 s) release of dopamine was observed. Stimulation with 1 m M nicotine, involving the stimulant binding to a ligand-gated ion channel, resulted in a short (37 ± 5 s) delay between stimulation and secretion. Application of 1 m M muscarine to the cells caused a long (103 ± 11 s) latency before exocytosis was detected. A biphasic response that appeared to be similar to a combination of nicotine- and muscarine-stimulated release was observed when cells were stimulated with 10 m M acetylcholine. Thus, it appears that the dynamics of stimulated release at single PC12 cells is significantly affected by the mechanism leading to exocytosis.  相似文献   

12.
Maitotoxin (MTX) is a water-soluble polyether, isolated from the marine dinoflagellate Gambierdiscus toxicus, that stimulates hormone release and Ca2+ influx. We have investigated the action by which MTX induces Ca2+ influx and stimulates prolactin (PRL) release from GH4C1 rat pituitary cells. PRL release elicited by MTX is abolished in a concentration-dependent manner by nimodipine, a dihydropyridine (DHP) antagonist of type L voltage-dependent calcium channels (L-VDCC), indicating that MTX-enhanced PRL release occurs via activation of type L-VDCC. As an initial approach to determine whether MTX interacts directly with VDCC, we examined whether MTX affects the binding of [3H]PN 200-110, a DHP class antagonist, in intact GH4C1 cells. MTX increased the Bmax of [3H]PN 200-110 binding to intact GH4C1 cells from 4.6 +/- 0.03 to 12.5 +/- 2.2 fmol/10(6) cells, without changing the Kd. This indicates that MTX does not bind to the DHP site, but rather suggests that MTX may have an allosteric interaction with the DHP binding site. The effect of MTX on DHP binding was largely (65%) calcium-dependent. We next examined whether MTX alters the membrane potential of GH4C1 cells using the potential sensitive fluorescent dye bisoxonol. Addition of 100 ng/ml MTX to GH4C1 cells caused a membrane depolarization within 2.5 min which reached a plateau at 5 min. The MTX-induced depolarization was not prevented by substitution of impermeant choline ions for Na+. It was similarly unaffected by K+ channel blockers or by depleting the K+ chemical concentration gradient with gramicidin, a monovalent cation pore-forming agent. By contrast, low extracellular Ca2+ totally abolished the depolarization response, and nimodipine at 100 nM substantially reduced the MTX-induced membrane depolarization. These results indicate that the predominant effect of MTX on depolarization is Ca2+ influx through L-VDCC. Taken together, our results indicate that MTX-enhanced PRL release occurs exclusively via activation of type L-VDCC in GH4C1 cells. We suggest that MTX induces an initial slow calcium conductance, possibly via an allosteric interaction with a component of the VDCC complex, which, in turn, initiates a positive feedback mechanism involving calcium-dependent membrane depolarization and voltage-dependent activation of calcium channels.  相似文献   

13.
Digital imaging of mitochondrial potential in single rat cardiomyocytes revealed transient depolarizations of mitochondria discretely localized within the cell, a phenomenon that we shall call “flicker.” These events were usually highly localized and could be restricted to single mitochondria, but they could also be more widely distributed within the cell. Contractile waves, either spontaneous or in response to depolarization with 50 mM K+, were associated with propagating waves of mitochondrial depolarization, suggesting that propagating calcium waves are associated with mitochondrial calcium uptake and consequent depolarization. Here we demonstrate that the mitochondrial flicker was directly related to the focal release of calcium from sarcoplasmic reticular (SR) calcium stores and consequent uptake of calcium by local mitochondria. Thus, the events were dramatically reduced by (a) depletion of SR calcium stores after long-term incubation in EGTA or thapsigargin (500 nM); (b) buffering intracellular calcium using BAPTA-AM loading; (c) blockade of SR calcium release with ryanodine (30 μM); and (d) blockade of mitochondrial calcium uptake by microinjection of diaminopentane pentammine cobalt (DAPPAC), a novel inhibitor of the mitochondrial calcium uniporter. These observations demonstrate that focal SR calcium release results in calcium microdomains sufficient to promote local mitochondrial calcium uptake, suggesting a tight coupling of calcium signaling between SR release sites and nearby mitochondria.  相似文献   

14.
alpha Latrotoxin of black widow spider is known to bind with high affinity to surface sites of rat pheochromocytoma (PC12) cells, thereby causing depolarization, calcium influx and massive neurotransmitter release. We show here that the toxin causes the accumulation of inositol phosphates, the products of phosphoinositide breakdown. Inositol 1,4,5, trisphosphate was predominantly accumulated shortly after toxin application. Phosphoinositide breakdown appears to be a direct consequence of toxin binding because high K+ and ionophores (which induce depolarization, calcium influx and transmitter release by different mechanisms) were without such effect. Phosphoinositide breakdown is known as an event coupled to the activation of receptors of various hormones and transmitters. We suggest therefore that the alpha latrotoxin binding site is a receptor coupled across the membrane to the phosphoinositide hydrolysing system.  相似文献   

15.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Glucose raises cytosolic free calcium in the rat pancreatic islets   总被引:1,自引:0,他引:1  
Cytosolic free calcium [( Ca2+]i) was measured using fura 2 in the whole pancreatic islets obtained from male Wistar rats by collagenase dispersion. The pattern of change of [Ca2+]i in response to high glucose, potassium (K+) depolarization or the removal of extracellular calcium was compared with the temporal profile of insulin secretion. Twenty-nine mM glucose produced a gradual increase in [Ca2+]i with approximately 1.5 min of latency period. It remained elevated until the end of observation period (25 min) during which period the first phase of insulin secretion ceased and the second phase of secretion gradually increased. Depolarizing concentration of KCl also produced an elevation of [Ca2+]i, without detectable latency period, which lasted at a sustained level for the entire observation period (30 min). KCl caused a rapid increase of insulin secretion followed by a gradually decreasing level of secretion. Elevated [Ca2+]i and insulin secretion in response to high glucose returned to the basal level when external calcium was removed by the addition of EGTA. We conclude that high glucose and K+ depolarization raise [Ca2+]i in the pancreatic islet. However, the elevation of [Ca2+]i and insulin secretion are not always correlated in the later period of stimulation.  相似文献   

17.
Mitochondrial involvement in Ca2+ signaling is thought to be due to the effect of mitochondrial Ca2+ removal from and Ca2+ release to cytosolic domains close to ryanodine and IP3 Ca2+ channels. However, mitochondria are a source of low levels of endogenous reactive oxygen species, and Ca2+ release channels are known to be redox-sensitive. In the present work, we studied the role of mitochondrial production of oxygen species in Ca2+ oscillations during physiological stimulation. Mitochondria-targeted antioxidants and mitochondrial inhibitors quickly inhibited calcium oscillations in pancreatic acinar cells stimulated by postprandial levels of the gut hormone cholecystokinin. Confocal microscopy using different redox-sensitive dyes showed that cholecystokinin-induced oscillations are associated with mitochondrial production of reactive oxygen species. This production is inhibited by application of mitochondria-targeted antioxidants and mitochondrial inhibitors. In addition, we found no correlation between inhibition of oscillations and mitochondrial depolarization. We conclude that low level production of reactive oxygen species by mitochondria is a necessary element in the development of Ca2+ oscillations during physiological stimulation. This study unveils a new and unexplored aspect of the participation of mitochondria in calcium signals.  相似文献   

18.
Transmitter release from depolarized nerve terminals seems to be preceded by a rise in the intracellular concentration of ionized calcium. In squid giant axons, depolarization promotes calcium entry by two routes: one that is blocked by tetrodotoxin and one that is insensitive to tetrodotoxin. The TTX-sensitive route seems to be the sodium channel of the action potential; but the TTX-insensitive route seems to be quite distinct from the sodium and potassium channels of the action potential. It is blocked by Mg-2+, Mn-2+ and Co-2+ ions and by the organic calcium antagonist D-600 and has many features in common with the mechanism that couples excitation to secretion.  相似文献   

19.
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we were able to demonstrate that removal of extracellular sodium reduced the membrane depolarization, whereas inhibition of K+ channels by 1 mM Ba2+, 2 mM Cs+, or 5 mM tetraethylammonium had no effect. The depolarization was also not inhibited by either 10 microM Gd3+ or a reduced Cl- solution. The histamine-induced increase in excitability was unaffected by K+ channel inhibitors; however, it was reduced by either blockage of voltage-gated Ca2+ channels with 200 microM Cd2+ or replacement of extracellular Ca2+ with Mg2+. Conversely, alterations in intracellular calcium with thapsigargin or caffeine did not inhibit the histamine-induced effects. However, in cells treated with both thapsigargin and caffeine to deplete internal calcium stores, the histamine-induced increase in excitability was decreased. Treatment with the phospholipase C inhibitor U73122 also prevented both the depolarization and the increase in excitability. From these data, we conclude that histamine, via activation of H1 receptors, activates phospholipase C, which results in 1) the opening of a nonspecific cation channel, such as a transient receptor potential channel 4 or 5; and 2) in combination with either the influx of Ca2+ through voltage-gated channels or the release of internal calcium stores leads to an increase in excitability.  相似文献   

20.
Time course of calcium release and removal in skeletal muscle fibers.   总被引:13,自引:3,他引:13       下载免费PDF全文
The transient increase in free myoplasmic calcium concentration due to depolarization of a skeletal muscle fiber is the net result of the release of calcium from the sarcoplasmic reticulum (SR) and its simultaneous removal by binding to various sites and by reuptake into the SR. We present a procedure for empirically characterizing the calcium removal processes in voltage-clamped fibers and for using such characterization to determine the time course of SR calcium release during a depolarizing pulse. Our results reveal a decline of the SR calcium release rate during depolarization that was not anticipated from simple inspection of the calcium transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号