首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the muscarinic receptor antagonist AF-DX 116 on the inhibitory action of muscarinic agonists and on responses mediated by nicotinic or muscarinic ganglionic transmission was studied in the superior cervical ganglion of the anesthetized cat. The postganglionic compound action potential evoked by cervical sympathetic trunk stimulation was depressed by methacholine or acetylcholine (ACh) injected into the ganglionic arterial supply. The depression was blocked by AF-DX 116. The compound action potentials evoked by preganglionic stimulus trains were also depressed when the intratrain frequency was 2 Hz or greater. This intratrain depression was, however, insensitive to AF-DX 116. The anticholinesterase drug physostigmine markedly enhanced the intratrain depression of the compound action potential. This effect was reversed by AF-DX 116. During nicotinic receptor block with hexamethonium, preganglionic stimulus trains with intratrain frequencies of 5 Hz or greater produced nicitating membrane contractions that could be blocked by the M1 muscarinic receptor antagonist pirenzepine. The amplitude of the contractions increased with frequency and reached a maximum at 20-40 Hz. AF-DX 116 had no effect on these responses. After administration of physostigmine, the amplitude of the nictitating membrane responses decreased with increasing intratrain frequency. AF-DX 116 reversed this effect. The data suggest that, in the superior cervical ganglion, AF-DX 116 sensitive muscarinic receptors which depress synaptic transmission are activated by exogenous agonists but not by the ACh released by the preganglionic axon terminals unless cholinesterase activity is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Shen S  Huang Y  Bourreau JP 《Life sciences》2000,67(15):1833-1846
We have compared the efficacy of cromakalim and nifedipine to inhibit acetylcholine (ACh) and pilocarpine-induced tonic contractions in control preparations and in tissues where a fraction of the muscarinic receptor population had been removed by alkylation with phenoxybenzamine (PBZ). Both agonists induced contractions by stimulating pharmacologically similar receptors, probably of the M3 muscarinic subtype. The receptor reserve was larger, and the coupling between stimulation and contraction (E-C coupling) more efficient when ACh was the stimulating agonist. For stimulations that produced equal levels of muscle response, cromakalim was more efficacious in inhibiting contractions induced by pilocarpine. The efficacy of cromakalim in relaxing contractions induced by ACh increased when the number of functional receptors decreased. Cromakalim and nifedipine decreased the efficiency of E-C coupling for ACh and pilocarpine. Cromakalim efficacy decreased in a sigmoid manner when stimulating concentrations of ACh (and receptor occupancy) increased, and there was an inverse relationship between receptor occupancy by ACh and cromakalim efficacy. In the presence of TEA, a K+ channel blocker, nifedipine almost completely inhibited contractions induced by the M3 muscarinic agonist bethanechol. These data indicate that in bovine tracheal smooth muscle, electro-mechanical coupling is an inherent part of muscarinic E-C coupling, but its functional expression is dependent upon the efficacy of stimulation. The data also suggest that the M3 receptor is coupled to a cellular pathway linked with the activation of K+ channels that exerts a potent functional antagonism against activation of voltage-dependent Ca2+ entry.  相似文献   

3.
1. Acetylcholine (ACh; 10−6 M—7 × 10−5 M), in the presence of neostigmine (10−5 M), caused contraction of the locust isolated foregut.2. The effect of ACh was mimicked by carbachol, propionylcholine (PCh), butyrylcholine (BCh), nicotine, SD35651, oxotremorine and muscarine.3. The contractions caused by ACh, BCh and carbachol were abolished by atropine (10−6M) and reduced by d-tubocurarine (10−5 M) and decamethonium (5 × 10−5 M). Hexamethonium and α-bungaro-toxin had no effect on contractions caused by the above agonists.4. None of the antagonists used in this study blocked the contractile effects of nicotine.5. It is concluded that the foregut contains a neuronal nicotinic receptor which, when activated, causes release of ACh which acts on a neuromuscular muscarinic receptor.  相似文献   

4.
The cholinergic agonists acetylcholine (ACh), nicotine, and pilocarpine produced depolarizations and contractions of muscle of the nematode Ascaris suum. Dose-dependent depolarization and contraction by ACh were suppressed by about two orders of magnitude by 100 microM d- tubocurarine (dTC), a nicotinic antagonist, but only about fivefold by 100 microM N-methyl-scopolamine (NMS), a muscarinic antagonist. NMS itself depolarized both normal and synaptically isolated muscle cells. The muscle depolarizing action of pilocarpine was not consistently antagonized by either NMS or dTC. ACh receptors were detected on motorneuron classes DE1, DE2, DI, and VI as ACh-induced reductions in input resistance. These input resistance changes were reversed by washing in drug-free saline or by application of dTC. NMS applied alone lowered input resistance in DE1, but not in DE2, DI, or VI motorneurons. In contrast to the effect of ACh, the action of NMS in DE1 was not reversed by dTC, suggesting that NMS-sensitive sites may not respond to ACh. Excitatory synaptic responses in muscle evoked by depolarizing current injections into DE1 and DE2 motorneurons were antagonized by dTC; however, NMS antagonized the synaptic output of only the DE1 and DE3 classes of motorneurons, an effect that was more likely to have been produced by motorneuron conduction failure than by pharmacological blockade of receptor. The concentration of NMS required to produce these changes in muscle polarization and contraction, ACh antagonism, input resistance reduction, and synaptic antagonism was 100 microM, or more than five orders of magnitude higher than the binding affinity for [3H]NMS in larval Ascaris homogenates and adult Caenorhabditis elegans (Segerberg, M. A. 1989. Ph.D. thesis. University of Wisconsin-Madison, Madison, WI). These results describe a nicotinic- like pharmacology, but muscle and motorneurons also have unusual responses to muscarinic agents.  相似文献   

5.
Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by d-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.  相似文献   

6.
Role of M2 muscarinic receptors in airway smooth muscle contraction   总被引:7,自引:0,他引:7  
Airway smooth muscle expresses both M2 and M3 muscarinic receptors with the majority of the receptors of the M2 subtype. Activation of M3 receptors, which couple to Gq, initiates contraction of airway smooth muscle while activation of M2 receptors, which couple to Gi, inhibits beta-adrenergic mediated relaxation. Increased sensitivity to intracellular Ca2+ is an important mechanism for agonist-induced contraction of airway smooth muscle but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization by acetylcholine (ACh) and endothelin-1 (ET-1) in porcine tracheal smooth muscle by measuring contractions at constant [Ca2+] in strips permeabilized with Staphylococcal alpha-toxin. Both ACh and ET-1 contracted airway smooth muscle at constant [Ca2+]. Pretreatment with pertussis toxin for 18-20 hours reduced ACh contractions, but had no effect on those of ET-1 or GTPgammaS. We conclude that the M2 muscarinic receptor contributes to airway smooth muscle contraction at constant [Ca2+] via the heterotrimeric G-protein Gi.  相似文献   

7.
Cholinergic and serotonergic receptors of Aplysia californica buccal muscles were characterized pharmacologically by determining compounds that effectively inhibited contractile responses to acetylcholine (ACh) and modulatory effects of serotonin (5-HT), respectively. pA50 for ACh to elicit contraction averaged 4.7 ± 0.1 (mean ± SE, equivalent to 2 × 10−5 M). Both hexamethonium bromide and atropine inhibited ACh-elicited contractions, but neither inhibited the response completely, nor were the two together able to antagonize the response completely. Curare caused inhibition only at low ACh doses, and muscarinic antagonists pirenzapine and 4-diphenylacetoxy-N-methylpiperidine methiodide caused partial inhibition. The most effective blocker of ACh-elicited contractions was the nicotinic antagonist mecamylamine. 10−4M mecamylamine completely blocked the cholinergic response. ACh contractions were inhibited 90% within 10 min and took >40 min to recover from mecamylamine. Specificity was indicated by the lack of effect of mecamylamine on potassium-elicited contraction. NAN-190 blocked the potentiating effect of 5-HT without having inhibitory or potentiating effects by itself on ACh-elicited contractions. NAN-190 blocked the potentiating effect of 8-OH-DPAT. Cholinergic receptors on Aplysia buccal muscles are most effectively inhibited by mecamylamine and may have mixed nicotinic/muscarinic character. Serotonergic receptors have pharmacological similarities to vertebrate 5-HT1A receptors and may be closely related to the gastropod 5-HTlym receptor.  相似文献   

8.
Strips of muscle, approximately 12 segments in length, were prepared from the body wall of the earthworm, Lumbricus terrestris, from which the nerve cord and viscera had been removed. Contractions to electrical stimulation and acetylcholine agonists were recorded using an isometric transducer. A range of nicotinic and muscarinic agonists and antagonists were tested on this preparation and the results indicate that the acetylcholine receptor on this muscle cannot be classified as either nicotinic or muscarinic. Hemicholinium-3 abolished electrically induced muscle twitches at concentrations which had no effect on the acetylcholine response. Alpha-Bungarotoxin blocked the responses to both electrical stimulation and acetylcholine while beta-bungarotoxin blocked the contractions induced by electrical stimulation but potentiated the acetylcholine contraction.  相似文献   

9.
A novel force transducer was used to measure the effects of cholinergic agonists on longitudinal contraction in Haemonchus contortus. Drugs were applied to whole worms or injected via a cannula in the pseudocoelomic cavity. A number of agonists, including nicotine and the anthelmintics m-aminolevamisole, levamisole and morantel, caused contractions in whole worms. Four- to 25-fold increases in concentration of the active compounds were required to cause contractions in each of two levamisole-resistant strains of H. contortus. Of the other compounds tested, bephenium had equivalent activity against susceptible and resistant strains. Anticholinesterase compounds caused contractions after a slight delay in susceptible, but not resistant worms. Numerous cholinergic agonists and other compounds did not cause contraction when applied to whole worms. One of these, acetylcholine, caused contractions in cannulated worms. Compared with the susceptible strain, five- to six-fold higher concentrations of acetylcholine were required to cause equivalent contractions in the resistant strains. Levamisole resistance in adult H. contortus is likely to be due to a change in the characteristics of the cholinergic receptor(s).  相似文献   

10.
The expression balance of M2 and M3 muscarinic receptor subtypes on the pathogenesis of airway hyperresponsiveness was investigated by using two congenitally related strains of guinea pigs, bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR). CCh-induced airway responses in vivo and in vitro were investigated by comparing the effects of muscarinic receptor subtype antagonists, and the relative amounts of M2 and M3 muscarinic receptor mRNA in tracheal smooth muscle and lung tissue were investigated. After treatment with muscarinic receptor subtype antagonists, the ventilatory mechanics (VT, Raw, and Cdyn) of response to CCh aerosol inhalation were measured by the bodyplethysmograph method. The effects of these antagonists on CCh-induced tracheal smooth muscle contraction were also investigated. The effects of M2 muscarinic receptor blockade were less but the effects of M3 muscarinic receptors blockade on the airway contractile responses were greater in BHS than in BHR. In M3 muscarinic receptor blockades, CCh-induced tracheal contractions in BHS were significantly greater than those in BHR. In tracheal smooth muscle from BHS, the relative amount of M2 muscarinic receptors mRNA was less but that of M3 muscarinic receptor mRNA was more than those in BHR. These results suggest that the high ACh level as a consequence of dysfunction of M2 muscarinic autoreceptors and the excessive effect of M3 muscarinic receptors on the airway smooth muscle may play an important role in the pathogenesis of airway hyperresponsiveness.  相似文献   

11.
The possibility that differences in beta-adrenergic sensitivity among canine trachealis muscles contracted with different contractile agonists are related to differences in the receptor-occupancy characteristics of the contractile agonists was investigated. Relaxation to isoproterenol was compared in muscles contracted with the muscarinic agonists McN-A-343 and acetylcholine (ACh). The apparent dissociation constant (pKB) values for the M1-antagonist, pirenzepine, against ACh (6.96 +/- 0.18) and McN-A-343 (6.84 +/- 0.08) were similar. The pKB values for the M3-antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) against ACh (8.76 +/- 0.13) and McN-A-343 (8.71 +/- 0.10) were also similar, suggesting that these agonists were activating the same subtype of muscarinic receptor, probably M3. However, the contractile response to ACh was associated with a greater receptor reserve than that for McN-A-343. Isoproterenol relaxed muscles contracted with McN-A-343 much more effectively than those contracted with an equieffective concentration of ACh. The results suggest that the relative resistance of ACh-induced contractions to relaxation by isoproterenol may not be an inherent quality of muscarinic receptor stimulation. The large receptor reserve available to ACh may act to buffer the contractile response from the inhibitory effects of beta-adrenergic stimulation. Alternatively, ACh may be able to initiate subcellular mechanisms that are unavailable to agonists of lower efficacy.  相似文献   

12.
The characteristics of the acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) receptors of Deroceras buccal muscle were examined using specific pharmacological probes and sucrose gap electrophysiological analysis. ACh induced concentration-dependent smooth tonic contractures coupled with considerable depolarisation from the normal resting membrane potential of -30.6 mV. The use of choline ester analogues such as carbachol, propionylcholine and butyrylcholine, specific cholinergic agonists such as nicotine, muscarine, bethanecol and pilocarpine and antagonists such as d-tubocurarine, succinylcholine, hexamethomium, atropine, gallamine, pirenzepine and scopolamine indicated that the ACh receptor showed both nicotinic and muscarinic characteristics; the muscarinic activity resembled that of a mammalian M(2)-like receptor. Alternatively, it can not be ruled out that both mammalian types of receptor may be present in this preparation since both nicotine and muscarine induced noticeable tension. 5-HT application induced characteristic dose-dependent phasic contractions accompanied by small but quite consistent depolarisations. Serotonergic agonist and antagonist experiments using 1-(3-chlorophenyl) piperazine, 1-(m-chlorophenyl) biguanide, methiothepin, methysergide and metoclopramide strongly suggested that the 5-HT receptor showed closest pharmacological affinity with the 5-HT(1) receptor class of mammals but with some 5-HT(2) activity. In view of the phylogenetic gap between molluscs and mammals it is not surprising that the ACh and 5-HT receptors of Deroceras can not be properly classified by conventional mammalian terminology.  相似文献   

13.
The ability of carbachol and 5-hydroxytryptamine (5-HT) to contract isolated segments of rainbow trout intestine in a concentration-dependent manner indicates the presence of muscarinic and serotoninergic receptors in this tissue. The activity of these agonists appears to be directly on the smooth muscle, since ganglionic blockers and inhibitors of neurotransmission did not inhibit contractions. The carbachol-induced contractions were selectively inhibited by atropine and (+-)-3-quinuclidinyl xanthene-9-carboxylate hemioxalate hydrate, an M-2 muscarinic receptor antagonist. However, the inhibition was not competitive. McN-A-343, an M-1 muscarinic agonist had no effect on intrinsic tone. The 5-HT-induced contractions were selectively inhibited by methysergide and the 5-HT2 receptor blockers, ketanserin and 1-(1-naphthyl)piperazine. Again, the inhibition by these agents was not competitive. 5-HT1 and 5-HT3 receptor antagonists did not inhibit contractions. The results thus suggest that the smooth muscle of the rainbow trout intestine contains M-2 muscarinic and 5-HT2 receptors.  相似文献   

14.
The competitive neuromuscular blocking agents, gallamine and pancuronium, enhanced the nictitating membrane contraction, in the cat, resulting from muscarine ganglionic transmission. Inhibition of ganglionic muscarinic hyperpolarization, in response to short tetanic bouts of preganglionic cervical sympathetic stimulation, was an associated event and is considered by us to be causally related. The neuroleptic drug, haloperidol, enhanced ganglionic hyperpolarization under similar stimulatory conditions, and reduced the nictitating membrane contraction elicited via ganglionic muscarine pathways, effects opposite to those produced by the skeletal muscle relaxants. Apomorphine reduced both ganglionic hyperpolarization and the ganglionic muscarinic-induced nictitating membrane contractions. The action of gallamine and pancuronium conforms to a speculative cholinergic antagonism at the specific muscarinic receptors, termed Mi, on the ganglionic dopaminergic interneuron. Haloperiodol and apomorphine are anticipated to be exerting distinct antagonistic and agonistic actions, respectively, on prejunctional dopamine receptors of the ganglionic interneuron. Ganglionic slow depolarization mediated through the muscarinic receptors, termed Me, was unaltered by any of the agents studied.  相似文献   

15.
(+)-Anatoxin-a (ANTX) stimulated guinea pig ileum contraction with a potency similar to that of acetylcholine (ACh); the stimulation was blocked by tubocurarine, hexamethonium, or atropine. Although the contraction stimulated by ANTX was blocked by atropine, no specific inhibition of the binding of [3H]N-methylscopolamine to ileum membranes was observed in the presence of ANTX. Furthermore, ANTX failed to stimulate the secretion of alpha-amylase from pancreatic acinar cells, a process that is activated by cholinergic agonists at the muscarinic receptors. When the ileum itself was stimulated by ACh, the contraction was not blocked by either hexamethonium or tubocurarine. Preincubation of the ileum with hemicholinium caused a 50% reduction in the ability of ANTX to stimulate contraction. Based upon these data, it was inferred that ANTX binds to postganglionic synaptic nicotinic receptors in the ileum, thus releasing endogenous ACh, which in turn causes ileum contraction by interacting with the postsynaptic muscarinic receptors. It was also observed that thymopentin (TP-5), a pentapeptide corresponding to positions 32-36 of thymopoietin, blocked the stimulation of ileum contraction by ANTX.  相似文献   

16.
Functional role of M2 muscarinic receptors in the guinea pig ileum   总被引:3,自引:0,他引:3  
Ehlert FJ  Thomas EA 《Life sciences》1995,56(11-12):965-971
Muscarinic agonists elicit contraction in the standard guinea pig ileum bioassay through activation of M3 muscarinic receptors that are also linked to phosphoinositide hydrolysis. Surprisingly, the most abundant muscarinic receptor in the ileum is the M2 which causes a specific inhibition of cyclic AMP accumulation elicited by the beta-adrenergic receptor. After most of the M3 receptors are inactivated, the ileum still retains high sensitivity to muscarinic agonists provided that the contractile responses are measured in the presence of histamine and forskolin, which together, have no effect on contraction. Under these conditions, the potencies of antagonists for blocking the contractile response are consistent with those expected for an M2 response. Moreover, the muscarinic contractile response measured in the presence of histamine and forskolin after inactivation of M3 receptors is pertussis toxin sensitive. In contrast, muscarinic contractions in the standard bioassay are pertussis toxin insensitive. These results demonstrate that the M2 muscarinic receptor can cause an indirect contraction of the guinea pig ileum by preventing the relaxing effect of agents that increase cAMP.  相似文献   

17.
Abstract: The purpose of these experiments was to determine if cholinergic agents affected the release of acetylcholine (ACh) from a synaptosomal preparation of the guinea pig ileum myenteric plexus. The synaptosomal preparation was first incubated with the precursor [3H]choline; subsequently, release of the stored [3H]ACh was measured. The release was decreased by oxotremorine or exogenous ACh plus hexamethonium and increased by exogenous ACh plus atropine. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) evoked release that was inhibited by nicotinic antagonists or muscarinic agonists. Release was stimulated half-maximally by approximately 2 μ m - and maximally by 10 μ m -DMPP. Either in the absence of calcium or at 0°C, DMPP was without effect. The effect of 10 μ m -DMPP was brief, a significant stimulation occurring only within the first 2 min at 37°C. Tetrodotoxin also inhibited excitation by DMPP but not completely. Thus, the release of [3H]ACh appears to be presynaptically modulated, negatively by muscarinic agonists and positively by nicotinic agonists.  相似文献   

18.
It has been hypothesized that the muscarinic receptor reserve for contraction of airway smooth muscle is an important determinant of the potency with which isoproterenol relaxes submaximal muscarinic contractions. The goals of this study were to inactivate, with phenoxybenzamine, a fraction of the muscarinic receptors present in canine tracheal smooth muscle, and then to determine whether this decrease in muscarinic receptor reserve altered the potency with which isoproterenol relaxed submaximal muscarinic contractions. Strips of smooth muscle were suspended from force transducers in vitro and preincubated with either vehicle (untreated) or phenoxybenzamine (10(-5) M) for 30 min. For muscarinic contractions induced by carbachol that were approximately 70-80% of maximum, the half-maximally effective concentration of isoproterenol was 2.4 +/- 0.8 x 10(-7) M for untreated strips but 5.8 +/- 1.3 x 10(-9) M for strips treated with phenoxybenzamine (n = 6, P less than 0.05). We concluded that treatment with phenoxybenzamine increased the sensitivity of a submaximal muscarinic contraction to isoproterenol. The results support the hypothesis that the muscarinic receptor reserve for contraction is an important determinant of the potency with which isoproterenol relaxes submaximal muscarinic contractions.  相似文献   

19.
The role of tissue organization of smooth muscle in short-term desensitization to acetylcholine (ACh) was examined by studying the desensitization of isolated single cells from guinea pig taenia caecum. Cells were isolated by collagenase digestion. The conditions during cell isolation were adjusted to obtain cells that showed repeated contractions. The cells contracted on treatment with 10(-7)-10(-6) M ACh, showing an all-or-none response. Desensitized cells also showed an all-or-none response but required a higher concentration of ACh for induction of contraction; i.e., the magnitude of their maximal response was not changed appreciably but the threshold concentration of ACh for their contraction was raised. Incubation of the whole tissue with 10(-4) M ACh for 10 min also caused desensitization. This desensitization was accompanied by reduction of the contractile response at intermediate concentrations. The mode of desensitization of isolated cells determined from the average response of the isolated cells was almost the same as that of whole muscle. It is concluded that the desensitization occurred in each cell irrespective of its tissue organization and that the desensitization was due to an increase of the threshold for contraction to ACh of each cell.  相似文献   

20.
The pharmacological mechanism of biphasic dose-response relationship for acetylcholine (ACh), relaxation at low doses (1 nM to 0.3 μM) and contraction at high doses (1 μM to 30 μM), in the chick jugular vein was investigated. Neither relaxations nor contractions were affected by the treatment with tetrodotoxin, hexamethonium, d-tubocurarine, phentolamine, propranolol, reserpine, or ouabain. Besides, anoxia did not affect the biphasic pattern of dose-response curve. The contraction was attenuated by the treatment with aspirin or indomethacin, but only slightly. The dose-response curves for these responses to acetylcholine were shifted to the right by the treatment with atropine. Methacholine, carbachol, bethanechol, and arecoline caused similar biphasic responses, although contractions caused by highest doses of bethanechol or arecoline were very small in amplitude. On the other hand, pilocarpine and McN-A-343 only relaxed the strips. The dose-response curves for cholinomimetics were all shifted to the right by the treatment with atropine. It was demonstrated that the responses of the chick jugular vein to muscarinic agonists are different from those of mammalian veins. The mechanisms underlying the biphasic response are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号