首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and gene map assignment of the Xiphophorus DNA ligase 1 gene   总被引:1,自引:0,他引:1  
Fishes represent the stem vertebrate condition and have maintained several gene arrangements common to mammalian genomes throughout the 450 Myr of divergence from a common ancestor. One such syntenic arrangement includes the GPI-PEPD enzyme association on Xiphophorus linkage group IV and human chromosome 19. Previously we assigned the Xiphophorus homologue of the human ERCC2 gene to linkage group U5 in tight association with the CKM locus. CKM is also tightly linked to the ERCC2 locus on human chromosome 19, leading to speculation that human chromosome 19 may have arisen by fusion of two ancestral linkage groups which have been maintained in fishes. To investigate this hypothesis further, we isolated and sequenced Xiphophorus fish genomic regions exhibiting considerable sequence similarity to the human DNA ligase 1 amino acid sequence. Comparison of the fish DNA ligase sequence with those of other species suggests several modes of amino acid conservation in this gene. A 2.2-kb restriction fragment containing part of an X. maculatus DNA ligase 1 exon was used in backcross hybrid mapping with 12 enzyme or RFLP loci. Significant linkage was observed between the nucleoside phosphorylase (NP2) and the DNA ligase (LIG1) loci on Xiphophorus linkage group VI. This assignment suggests that the association of four DNA repair-related genes on human chromosome 19 may be the result of chance chromosomal rearrangements.   相似文献   

2.
Electrophoretic variation ascribable to two enzyme loci, coding for a guanylate kinase (GUK2) and a glyceraldehyde-3-phosphate dehydrogenase (GAPD1), was observed in three species of fishes of the genus Xiphophorus. Electrophoretic patterns in F1 hybrid heterozygotes suggested a monomeric subunit structure for GUK2 and confirmed a tetrameric structure for GAPD1. Variant alleles at the two loci exhibited normal Mendelian segregation in backcross hybrids. Linkage analyses indicate estimated recombination of GUK2-7.6 percent-GAPD 1. This group (designated linkage group III) was shown to assort independently from the 7 loci comprising linkage groups I and II and from 26 other informative markers, within the limits of the data. Difficulties inherent in establishing homology with linkage groups in other species in cases involving presumed gene duplication are discussed.  相似文献   

3.
The linkage of loci coding for glucose-6-phosphate dehydrogenase (G6PD) and phosphogluconate dehydrogenase (PGD) is described in fish of the genus Poecilia (Teleostei:Poeciliidae) and designated Poecilia linkage group I. These two loci were shown to assort independently from six other informative markers (peptidase S, malate dehydrogenase 2 [soluble], mannose phosphate isomerase, parvalbumin 2, phosphoglucomutase, and glyceraldehyde-3-phosphate dehydrogenase 2) within the limits of the data obtained. Data for the linkage analyses were generated by scoring starch-gel electrophoretic phenotypes of the eight loci in reciprocal backcross hybrids obtained from matings between Poecilia perugiae and P. vittata. The linkage chi 2 for G6PD-PGD locus pairs was significant (P less than 0.001) in all reciprocal backcross hybrid broods (22.7% recombinants in the combined data), indicating linkage in both parental species. The linkage of G6PD and PGD in gene maps of the poeciliid genera Xiphophorus and Poeciliopsis documents homology of this linkage within the family. Linkages in salmonid and centrarchid fishes suggest conservation of this linkage group in most or all teleosts. The six additional indpendently assorting loci have been assigned to independent linkage groups in Xiphophorus; thus, no example of poeciliid linkage group divergence has yet been identified.  相似文献   

4.
Xiphophorus fishes and their hybrids are used as models for the study of melanoma and other diseases. The cyclin-dependent kinase inhibitor gene family in humans is comprised of four members, including CDKN2A (P16), and dysregulation of this gene is implicated in numerous neoplasms including melanomas. We have investigated the status of the gene family in the southern platyfish X. maculatus. Xiphophorus harbors at least two such loci, which we now term CDKN2A/B and CDKN2D. Both loci map to Xiphophorus linkage group 5, a genomic area that has long been known to harbor the DIFF tumor suppressor locus. Within this report, we report on the complete cloning, genomic exon/intron boundary delineation, linkage mapping and expressional characteristics of Xiphophorus CDKN2D. We also compare and contrast this expression to that of the previously isolated CDKN2AB locus in normal and neoplastic tissues derived from non-hybrid and hybrid fishes. The hypothetical evolutionary relationships of gene family members and their involvement in melanoma is evaluated. In comparison to CDKN2A/B, the RNA expression of Xiphophorus CDKN2D differs in normal tissues and is not associated with melanotic/pathologic tissues, confirming functional divergence between obvious homologues.  相似文献   

5.
The products of 49 protein-coding loci were examined by starch gel electrophoresis for populational variation in six species of Xiphophorus fishes and/or segregation in intra- and interspecific backcross and intercross hybrids. Electrophoretic variation was observed for 29 of the 35 locus products in a survey of 42 population samples. The highest frequency of polymorphic loci observed in noninbred populations was 0.143. After ten or more generations of inbreeding, all loci studied were monomorphic. Inbred strains generally exhibited the commonest electrophoretic alleles of the population from which they were derived. An assessment of genetic distances among Xiphophorus populations reflected classical systematic relationships and suggested incipient subspeciation between X. maculatus from different drainages as well as several species groups. Thirty-three loci were analyzed with respect to segregation in hybrids. The goodness of fit of segregations to Mendelian expectations at all loci analyzed (except loci in linkage group I) is interpreted as evidence for high genetic compatibility of the genomes of Xiphophorus species. It is anticipated that these data will result in a rapid expansion of the assignment of protein-coding loci to linkage groups in these lower vertebrate species.  相似文献   

6.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri x X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, chi 2 = 35.37, P less than 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

7.
A microsatellite genetic linkage map for Xiphophorus   总被引:3,自引:0,他引:3  
Interspecies hybrids between distinct species of the genus Xiphophorus are often used in varied research investigations to identify genomic regions associated with the inheritance of complex traits. There are 24 described Xiphophorus species and a greater number of pedigreed strains; thus, the number of potential interspecies hybrid cross combinations is quite large. Previously, select Xiphophorus experimental crosses have been shown to exhibit differing characteristics between parental species and among the hybrid fishes derived from crossing them, such as widely differing susceptibilities to chemical or physical agents. For instance, genomic regions harboring tumor suppressor and oncogenes have been identified via linkage association of these loci with a small set of established genetic markers. The power of this experimental strategy is related to the number of genetic markers available in the Xiphophorus interspecies cross of interest. Thus, we have undertaken the task of expanding the suite of easily scored markers by characterization of Xiphophorus microsatellite sequences. Using a cross between Xiphophorus maculatus and X. andersi, we report a linkage map predominantly composed of microsatellite markers. All 24 acrocentric chromosome sets of Xiphophorus are represented in the assembled linkage map with an average intergenomic distance of 7.5 cM. Since both male and female F1 hybrids were used to produce backcross progeny, these recombination rates were compared between "male" and "female" maps. Although several genomic regions exhibit differences in map length, male- and female-derived maps are similar. Thus Xiphophorus, in contrast to zebrafish, Danio rerio, and several other vertebrate species, does not show sex-specific differences in recombination. The microsatellite markers we report can be easily adapted to any Xiphophorus interspecies and some intraspecies crosses, and thus provide a means to directly compare results derived from independent experiments.  相似文献   

8.
Electrophoretic variation ascribable to three protein-coding loci, coding for glutamine synthetase (GS), uridine monophosphate kinase (UMPK), and transferrin (Tf), was observed in three species of fish of the genus Xiphophorus. Electrophoretic patterns in interspecific F1 hybrid heterozygotes suggested monomeric subunit structures of UMPK and Tf and a multimeric structure of undetermined subunit number of GS. Linkage analyses in backcross hybrids indicated a recombination map of GS-0%-Tf-10.8%-UMPK. This group (designated Xiphophorus linkage group VI) was shown to assort independently from the 14 enzyme loci assigned to linkage groups I-V and from 19 other informative markers within the limits of the data.  相似文献   

9.
Electrophoretic variants at four additional enzyme loci--two esterases (Est-2, Est-3), retinal lactate dehydrogenase (LDH-1) and mannose phosphate isomerase (MPI)--among three species and four subspecies of fish of the genus Xiphophorus were observed. Electrophoretic patterns in F1 hybrid heterozygotes confirmed the monomeric structures of MPI and the esterase and the tetrametric structure of LDH in these fishes. Variant alleles of all four loci displayed normal Mendelian segregation in backcross and F2 hybrids. Recombination data from backcross hybrids mapped with Haldane's mapping function indicate the four loci to be linked as Est-2--0.43--Est3--0.26--LDH-1--0.19--MPI. Significant interference was detected and apparently concentrated in the Est-3 to MPI region. No significant sex-specific differences in recombination were observed. This group (designated linkage group II) was shown to assort independently from the three loci of linkage group I (adenosine deaminase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) and from glyceraldehyde-3-phosphate dehydrogenase and two isocitrate dehydrogenase loci. Evidence for conservation of the linkage group, at least in part, in other vertebrate species is presented.  相似文献   

10.
Swordtail fishes and platies in the genus Xiphophorus (order Cyprinodontiformes, Teleostei) encompass 22 closely related species which are the products of a recent adaptive radiation in the streams of Central America. To investigate the evolution of the major histocompatibility complex (Mhc) genes in the period immediately following speciation, the class I genes from 20 of the 22 species were cloned and characterized by sequencing. The analysis revealed the existence of multiple loci (at least seven in some individuals) whose numbers vary among the different species and probably also among individuals of the same species. The variation does not seem to bear any relationship to the taxonomy of the genus. Genes at the different loci are distinguished by their intron sequences and by the presence of characteristic motifs in exons 2 and 3. The variation in copy number of loci may have been effected in part by unequal crossing over occurring between introns of misaligned closely related genes. The sequences of the genes fall into two groups, A and B, which represent ancient lineages. The groups define two families of loci, which diverged from each other an estimated 85 million years ago, before the separation of the Acanthopterygii from the Paracanthopterygii of the advanced bony fishes. Evolution of the genes within each family can be explained by the birth-and-death process driven by gene duplications and mutational differentiation.  相似文献   

11.
Variability of genetic sex determination in poeciliid fishes   总被引:13,自引:4,他引:9  
Volff JN  Schartl M 《Genetica》2001,111(1-3):101-110
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids.  相似文献   

12.
 The mammalian major histocompatibility complex (Mhc) consists of three closely linked regions, I, II, and III, occupying a single chromosomal segment. The class I loci in region I and the class II loci in region II are related in their structure, function, and evolution. Region III, which is intercalated between regions I and II, contains loci unrelated to the class I and II loci, and to one another. There are indications that a similar Mhc organization exists in birds and amphibians. Here, we demonstrate that in the zebrafish (Danio rerio), a representative of the teleost fishes, the class II loci are divided between two linkage groups which are distinct from the linkage group containing the class I loci. The β2-microglobulin-encoding gene is loosely linked to one of the class II loci. The gene coding for complement factor B, which is one of the region III genes in mammals, is linked neither to the class I nor to the class II loci in the zebrafish. These results, combined with preliminary data suggesting that the class I and class II regions in another order of teleost fish are also in different linkage groups, indicate that close linkage of the two regions is not necessary either for regulation of expression or for co-evolution of the class I and class II loci. They also raise the question of whether linkage of the class I and class II loci in tetrapods is a primitive or derived character. Received: 16 December 1996 / Revised: 6 February 1997  相似文献   

13.
M. Schartl 《Genetics》1990,126(4):1083-1091
Several species of the genus Xiphophorus are polymorphic for specific pigment patterns. Some of these give rise to malignant melanoma following the appropriate crossings. For one of these pattern loci from the playfish Xiphophorus maculatus the melanoma-inducing gene has been cloned and found to encode a novel receptor tyrosine kinase, designated Xmrk. Using molecular probes from this gene in Southern blot analyses on single fish DNA preparations from 600 specimens of different populations of various species of the genus Xiphophorus and their hybrids, either with or without melanoma-predisposing pattern, it was shown that all individuals contain the Xmrk gene as a proto-oncogene. It is located on the sex chromosome. All fish that carry a melanoma-predisposing locus which has been identified by Mendelian genetics contain an additional copy of Xmrk, closely linked to a specific melanophore pattern locus on the sex chromosome. The melanoma-inducing loci of the different species and populations are homologous. The additional copy of Xmrk obviously arose by a gene-duplication event, thereby acquiring the oncogenic potential. The homology of the melanoma-inducing loci points to a similar mechanism of tumor suppression in all feral fish populations of the different species of the genus Xiphophorus.  相似文献   

14.
Fishes of the genus Xiphophorus (platyfishes and swordtails) are small, internally fertilizing, livebearing, and derived from freshwater habitats in Mexico, Guatemala, Belize, and Honduras. Scientists have used these fishes in cancer research studies for more than 70 yr. The genus is presently composed of 22 species that are quite divergent in their external morphology. Most cancer studies using Xiphophorus use hybrids, which can be easily produced by artificial insemination. Phenotypic traits, such as macromelanophore pigment patterns, are often drastically altered as a result of lack of gene regulation within hybrid fishes. These fish can develop large exophytic melanomas as a result of upregulated expression of these pigment patterns. Because backcross hybrid fish are susceptible to the development of melanoma and other neoplasms, they can be subjected to potentially deleterious chemical and physical agents. It is thus possible to use gene mapping and cloning methodologies to identify and characterize oncogenes and tumor suppressors implicated in spontaneous or induced neoplasia. This article reviews the history of cancer research using Xiphophorus and recent developments regarding DNA repair capabilities, mapping, and cloning of candidate genes involved in neoplastic phenotypes. The particular genetic complexity of melanoma in these fishes is analyzed and reviewed.  相似文献   

15.
A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci—isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of χ2 was significant (<0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA—6%— G6PDH—24%—6PGD, and ADA—29%— 6PGD (30% when corrected for double cross-overs), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.  相似文献   

16.
Gene map of the cow: conservation of linkage with mouse and man   总被引:9,自引:0,他引:9  
Cattle-hamster hybrid somatic cells segregating cattle chromosomes have been analyzed by cellulose-acetate electrophoresis for 28 enzyme gene products including the previously unassigned loci for GAPD, ITPA, ADA, ACO1, GDH, GUK, CAT, and GLO1. These 28 loci are organized into 21 independent syntenic groups bringing the composite bovine gene map to 35 loci on 24 syntenic groups. Thirty-two homologous genes now have been mapped in humans, mice, and cattle. Conservation of cattle and human linkage groups is evidenced by only three linkage discordancies among these 32 loci as contrasted to nine discordancies among the same loci in the human and mouse maps.  相似文献   

17.

Background

Rainbow trout have an XX/XY genetic mechanism of sex determination where males are the heterogametic sex. The homology of the sex-determining gene (SDG) in medaka to Dmrt1 suggested that SDGs evolve from downstream genes by gene duplication. Orthologous sequences of the major genes of the mammalian sex determination pathway have been reported in the rainbow trout but the map position for the majority of these genes has not been assigned.

Results

Five loci of four candidate genes (Amh, Dax1, Dmrt1 and Sox6) were tested for linkage to the Y chromosome of rainbow trout. We exclude the role of all these loci as candidates for the primary SDG in this species. Sox6i and Sox6ii, duplicated copies of Sox6, mapped to homeologous linkage groups 10 and 18 respectively. Genotyping fishes of the OSU × Arlee mapping family for Sox6i and Sox6ii alleles indicated that Sox6i locus might be deleted in the Arlee lineage.

Conclusion

Additional candidate genes should be tested for their linkage to the Y chromosome. Mapping data of duplicated Sox6 loci supports previously suggested homeology between linkage groups 10 and 18. Enrichment of the rainbow trout genomic map with known gene markers allows map comparisons with other salmonids. Mapping of candidate sex-determining loci is important for analyses of potential autosomal modifiers of sex-determination in rainbow trout.  相似文献   

18.
Microsatellite loci were identified in channel catfish gene sequences or random clones from a small insert genomic DNA library. Outbred populations of channel catfish contained an average of eight alleles per locus and an average heterozygosity of 0.70. A genetic linkage map of the channel catfish genome (N = 29) was constructed from two reference families. A total of 293 microsatellite loci were polymorphic in one or both families, with an average of 171 informative meioses per locus. Nineteen type I loci, 243 type II loci, and one EST were placed in 32 multipoint linkage groups covering 1958 cM. Nine more type II loci were contained in three two-point linkage groups covering 24.5 cM. Twenty-two type II loci remained unlinked. Multipoint linkage groups ranged in size from 11.9 to 110.5 cM with an average intermarker distance of 8.7 cM. Seven microsatellite loci were closely linked with the sex-determining locus. The microsatellite loci and genetic linkage map will increase the efficiency of selective breeding programs for channel catfish.  相似文献   

19.
M. Schartl 《Genetics》1988,119(3):679-685
In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus.  相似文献   

20.
Despite the major importance of sex determination in aquaculture, no master sex-determining gene has been identified so far in teleost fish. In the platyfish Xiphophorus maculatus, this master gene is flanked by two receptor tyrosine kinase genes, the Xmrk oncogene responsible for melanoma formation in some Xiphophorus interspecific hybrids, and its proto-oncogenic counterpart. Both Xmrk genes, which have already been characterised at the molecular level, delimit a region of about 1 Mb that contains other gene loci involved in sexual maturity, pigmentation and melanoma formation. We have constructed a genomic bacterial artificial chromosome (BAC) library of X. maculatus with a tenfold coverage of the haploid genome and walked on both X and Y sex chromosomes starting from both Xmrk genes. This led to the assembly of BAC contigs from the sex-determining region covering approximately 950 kb of the X and 750 kb of the Y chromosome. To our knowledge, these are the largest contigs reported so far for sex chromosomes in fish. Molecular analysis suggests that the sex-determining region of X. maculatus frequently undergoes retrotranspositions and other kinds of rearrangements. This genomic plasticity might be related to the high genetic variability observed in Xiphophorus for sex determination, sexual maturity, pigmentation and melanoma formation, which are encoded by gene loci located in the sex-determining region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号