首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The survival motor neuron (SMN) gene has been described as a determining gene for spinal muscular atrophy (SMA). SMN has a closely flanking, nearly identical copy (cBCD541). Gene and copy gene can be discriminated by sequence differences in exons 7 and 8. The large majority of SMA patients show homozygous deletions of at least exons 7 and 8 of the SMN gene. A minority of patients show absence of SMN exon 7 but retention of exon 8. This is explained by results of our present analysis of 13 such patients providing evidence for apparent gene-conversion events between SMN and the centromeric copy gene. Instead of applying a separate analysis for absence or presence of SMN exons 7 and 8, we used a contiguous PCR from intron 6 to exon 8. In every case we found a chimeric gene with a fusion of exon 7 of the copy gene and exon 8 of SMN and absence of a normal SMN gene. Similar events, including the fusion counterpart, were observed in a group of controls, although in the presence of a normal SMN gene. Chimeric genes as the result of fusions of parts of SMN and cBCD541 apparently are far from rare and may partly explain the frequently observed SMN deletions in SMA patients.  相似文献   

3.
4.
Autosomal recessive spinal muscular atrophy (SMA) is classified, by age of onset and maximal motor milestones achieved, into type I (severe form), type II (intermediate form) and type III (mild/moderate form). SMA is caused by mutations in the survival motor neuron telomeric gene (SMN1) and a centromeric functional copy of this gene (SMN2) exists, both genes being located at 5q13. Homozygous deletion of exons 7 and 8 of SMN1 has been detected in approx 85% of Spanish SMA patients regardless of their phenotype. Nineteen cases with the sole deletion of exon 7 but not exon 8 (2 cases of type I, 13 cases of type II, four cases of type III) were further analysed for the presence of SMN2-SMN1 hybrid genes. We detected four different hybrid structures. Most of the patients were carriers of a hybrid structure: centromeric intron 6- centromeric exon 7- telomeric exon 8 (CCT), with or without neuronal apoptosis-inhibitor protein (NAIP). In two patients, a different hybrid structure, viz. telomeric intron 6- centromeric exon 7- telomeric exon 8 (TCT), was detected with or without NAIP. A phenotype-genotype correlation comparing the different structures of the hybrid alleles was delineated. Type I cases in our series are attributable to intrachromosomal deletion with a smaller number of SMN2 copies. Most cases with hybrid genes are type II occurring by a combination of a classical deletion in one chromosome and a hybrid gene in the other. Type III cases are closely associated with homozygozity or compound heterozygozity for hybrid genes resulting from two conversion events and have more copies of hybrid genes and SMN2 than type I or II cases.  相似文献   

5.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

6.
Genetic testing and risk assessment for spinal muscular atrophy (SMA)   总被引:20,自引:0,他引:20  
Ogino S  Wilson RB 《Human genetics》2002,111(6):477-500
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases, affecting approximately 1 in 10,000 live births, and with a carrier frequency of approximately 1 in 50. Because of gene deletion or conversion, SMN1 exon 7 is homozygously absent in approximately 94% of patients with clinically typical SMA. Approximately 30 small intragenic SMN1 mutations have also been described. These mutations are present in many of the approximately 6% of SMA patients who do not lack both copies of SMN1, whereas SMA of other patients without a homozygous absence of SMN1 is unrelated to SMN1. A commonly used polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) assay can be used to detect a homozygous absence of SMN1 exon 7. SMN gene dosage analyses, which can determine the copy numbers of SMN1 and SMN2 (an SMN1 homolog and a modifier for SMA), have been developed for SMA carrier testing and to confirm that SMN1 is heterozygously absent in symptomatic individuals who do not lack both copies of SMN1. In conjunction with SMN gene dosage analysis, linkage analysis remains an important component of SMA genetic testing in certain circumstances. Genetic risk assessment is an essential and integral component of SMA genetic testing and impacts genetic counseling both before and after genetic testing is performed. Comprehensive SMA genetic testing, comprising PCR-RFLP assay, SMN gene dosage analysis, and linkage analysis, combined with appropriate genetic risk assessment and genetic counseling, offers the most complete evaluation of SMA patients and their families at this time. New technologies, such as haploid analysis techniques, may be widely available in the future.  相似文献   

7.
8.
Homozygous mutations of the telomeric survival motor neurone gene (SMN1) cause spinal muscular atrophy (SMA). The centromeric copy gene (SMN2) generally skips exon 7 during splicing and fails to compensate for SMN1 deficits, so SMA cells have reduced SMN protein and few nuclear gems. To investigate the role of exon 7 in SMN localisation, cDNAs for full-length SMN and SMNDeltaexon 7 were overexpressed in COS cells, neurones and SMA fibroblasts. Both constructs formed discrete intranuclear bodies colocalising with p80-coilin, but produced more cytoplasmic aggregates in cells overexpressing exon 7. Hence, the exon 7 domain enhances SMN aggregation but is not critical for gem formation.  相似文献   

9.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a carrier frequency of approximately 1 in 40. Approximately 95% of patients have homozygous deletions of exon 7 and/or 8 of the SMN1 gene. Carrier testing for SMA is relatively complex and requires quantitative polymerase chain reaction (PCR) of genomic DNA to determine SMN1 copy number. The purpose of this study was to assess the feasibility of carrier testing for SMA in males, by nested PCR analysis of SMN1 deletions in single sperm cells. A nested PCR method was developed to amplify SMN1 exon 7 in single cells. Restriction enzyme digestion with DraI was used to differentiate between the highly homologous SMN1 and SMN2 genes. Single sperm cells from five known SMA carriers and six noncarriers were analyzed. Among the five carriers, a total of 132 single sperm cells were analyzed and SMN1 exon 7 deletion was detected in 68 cells (51.5%). In contrast, among the six noncarriers, a total of 136 single sperm cells were analyzed. Of these, an apparent SMN1 exon 7 deletion was detected in four sperm cells. This was interpreted as an allele dropout (ADO) rate of 2.9%. We conclude that nested PCR of SMN1 exon 7 is an accurate and reproducible method for detection of SMA male carriers with a SMN1 deletion.  相似文献   

10.
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.  相似文献   

11.
12.
The autosomal recessive neuromuscular disorder proximal spinal muscular atrophy (SMA) is caused by the loss or mutation of the survival motor neuron (SMN) gene, which exists in two nearly identical copies, telomeric SMN (telSMN) and centromeric SMN (cenSMN). Exon 7 of the telSMN gene is homozygously absent in approximately 95% of SMA patients, whereas loss of cenSMN does not cause SMA. We searched for other telSMN mutations among 23 SMA compound heterozygotes, using heteroduplex analysis. We identified telSMN mutations in 11 of these unrelated SMA-like individuals who carry a single copy of telSMN: these include two frameshift mutations (800ins11 and 542delGT) and three missense mutations (A2G, S262I, and T274I). The telSMN mutations identified to date cluster at the 3' end, in a region containing sites for SMN oligomerization and binding of Sm proteins. Interestingly, the novel A2G missense mutation occurs outside this conserved carboxy-terminal domain, closely upstream of an SIP1 (SMN-interacting protein 1) binding site. In three patients, the A2G mutation was found to be on the same allele as a rare polymorphism in the 5' UTR, providing evidence for a founder chromosome; Ag1-CA marker data also support evidence of an ancestral origin for the 800ins11 and 542delGT mutations. We note that telSMN missense mutations are associated with milder disease in our patients and that the severe type I SMA phenotype caused by frameshift mutations can be ameliorated by an increase in cenSMN gene copy number.  相似文献   

13.
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease and a leading cause of infant mortality. Deletions or mutations of SMN1 cause SMA, a gene that encodes a SMN protein. SMN is important for the assembly of Sm proteins onto UsnRNA to UsnRNP. SMN has also been suggested to direct axonal transport of β-actin mRNA in neurons. Humans contain a second SMN gene called SMN2 thus SMA patients produce some SMN but not with sufficient levels. The majority of SMN2 mRNA does not include exon 7. Here we show that increased expression of PSF promotes inclusion of exon 7 in the SMN2 whereas reduced expression of PSF promotes exon 7 skipping. In addition, we present evidence showing that PSF interacts with the GAAGGA enhancer in exon 7. We also demonstrate that a mutation in this enhancer abolishes the effects of PSF on exon 7 splicing. Furthermore we show that the RNA target sequences of PSF and tra2β in exon 7 are partially overlapped. These results lead us to conclude that PSF interacts with an enhancer in exon 7 to promote exon 7 splicing of SMN2 pre-mRNA.  相似文献   

14.
We report two novel mutations in three cases of spinal muscular atrophy (SMA), including two distant cousins who followed an unexpectedly severe course. Diagnosis was confirmed by reduced SMN protein and full-length SMN mRNA levels. Sequencing of the non-deleted SMN1 gene revealed a single G insertion at the end of exon 1 in the two cousins and a novel G275S exon 6 missense mutation in the milder case.  相似文献   

15.
Spinal muscular atrophy (SMA) is caused by mutations in the SMN1 gene. We have studied the molecular pathology of SMA in 745 unrelated Spanish patients using PCR-RFLP, SMN gene dosage analysis, linkage studies, long-range PCR and direct sequencing. Our systematic approach allowed us to complete genetic testing and risk assessment in 736 SMA patients (98.8%). Females were more frequently affected by the acute form of the disease (type I), whereas chronic forms (type II–III) predominated in males (p < 0.008). Absence of the SMN1 gene was detected in 671 patients (90%), and hybrid SMN1SMN2 genes were observed in 37 cases (5%). Furthermore, we detected 13 small mutations in 28 patients (3.8%), four of which were previously identified in other populations (c.91dupT; c.770_780dup11; p.Tyr272Cys and p.Thr274Ile), while five mutations were found to date only in Spanish patients (c.399_402delAGAG, p.Ile116Phe, p.Gln136Glu, c.740dupC and c.834+2T>G). The c.399_402delAGAG mutation accounted for 1.9% of all Spanish SMA patients. Finally, we discovered four novel mutations: c.312dupA, c.411delT, p.Trp190X and p.Met263Thr. Our results confirm that most SMA cases are due to large genetic rearrangements in the repetitive region of the SMA locus, resulting in absence-dysfunction of the SMN1 gene. By contrast, ancestrally inherited small mutations are responsible for only a small number of cases. Four prevalent changes in exons 3 and 6 (c.399_402delAGAG; c.770_780dup11; p.Tyr272Cys; p.Thr274Ile) accounted for almost 70% of our patients with these subtle mutations. An SMN–SMN dimer model featuring tight hydrophobic-aromatic interactions is proposed to explain the impact of mutations at the C-terminal end of the protein.  相似文献   

16.
Polymerase chain reaction (PCR), followed by restriction digestion is universally used for molecular diagnosis of spinal muscular atrophy (SMA). In the present study, we have used a modified strategy based on amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) to develop a rapid and reliable method for mutation detection and prenatal diagnosis in SMA patients. The telomeric (SMN1) and centromeric (SMN2) copies of exon 7 of the survival motor neuron (SMN) gene were amplified by ARMS-PCR, using primers specific to SMN1 and SMN2 nucleotide sequence with the exonic mismatch G (for SMN1) and A (for SMN2) at the 3' end. The PCR products were analyzed on agarose gels. All the patients who had homozygous deletion of exon 7 of SMN1 gene by conventional PCR-restriction fragment length polymorphism (PCR-RFLP) method showed the same deletion status by ARMS-PCR. This procedure showed a 100% concordance between PCR-RFLP and ARMS-PCR methods for the detection of SMN1/SMN2 status in patients with SMA. An artifact due to incomplete digestion is not a problem while using ARMS-PCR. The modified protocol is specific, rapid and highly reliable for use in prenatal diagnosis as well.  相似文献   

17.
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease, which causes death of motor neurons in the anterior horn of the spinal cord. Genetic cause of SMA is the deletion or mutation of SMN1 gene, which encodes the SMN protein. Although SMA patients include SMN2 gene, a duplicate of SMN1 gene, predominant production of exon 7 skipped isoform from SMN2 pre-mRNA, fails to rescue SMA patients. Here we show that hnRNP M, a member of hnRNP protein family, when knocked down, promotes exon 7 skipping of both SMN2 and SMN1 pre-mRNA. By contrast, overexpression of hnRNP M promotes exon 7 inclusion of both SMN2 and SMN1 pre-mRNA. Significantly, hnRNP M promotes exon 7 inclusion in SMA patient cells. Thus, we conclude that hnRNP M promotes exon 7 inclusion of both SMN1 and SMN2 pre-mRNA. We also demonstrate that hnRNP M contacts an enhancer on exon 7, which was previously shown to provide binding site for tra2β. We present evidence that hnRNP M and tra2β contact overlapped sequence on exon 7 but with slightly different RNA sequence requirements. In addition, hnRNP M promotes U2AF65 recruitment on the flanking intron of exon 7. We conclude that hnRNP M promotes exon 7 inclusion of SMN1 and SMN2 pre-mRNA through targeting an enhancer on exon 7 through recruiting U2AF65. Our results provide a clue that hnRNP M is a potential therapeutic target for SMA.  相似文献   

18.
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans, caused by homozygous absence of the survival motor neuron gene 1 (SMN1). SMN2, a copy gene, influences the severity of SMA and may be used in somatic gene therapy of patients with SMA in the future. We present a new, fast, and highly reliable quantitative test, based on real-time LightCycler PCR that amplifies either SMN1 or SMN2. The SMN1 copies were determined and validated in 329 carriers and controls. The specificity of the test is 100%, whereas the sensitivity is 96.2%. The quantitative analysis of SMN2 copies in 375 patients with type I, type II, or type III SMA showed a significant correlation between SMN2 copy number and type of SMA as well as duration of survival. Thus, 80% of patients with type I SMA carry one or two SMN2 copies, and 82% of patients with type II SMA carry three SMN2 copies, whereas 96% of patients with type III SMA carry three or four SMN2 copies. Among 113 patients with type I SMA, 9 with one SMN2 copy lived <11 mo, 88/94 with two SMN2 copies lived <21 mo, and 8/10 with three SMN2 copies lived 33-66 mo. On the basis of SMN2 copy number, we calculated the posterior probability that a child with homozygous absence of SMN1 will develop type I, type II, or type III SMA.  相似文献   

19.
20.
We identified homozygous absence of exon 7 of the telomeric copy of the survival motor neuron gene (telSMN) in 88.4% (38/43) of spinal muscular atrophy (SMA) patients from Slovakia. Additional deletions within the neuronal apoptosis inhibitory protein (NAIP) gene were found in 38.5% of type I, 12.5% of type II and never in type III SMA patients. Neither the SMN nor the NAIP gene was deleted in 81 healthy relatives and 25 controls tested. In one family, pseudodominant inheritance was identified. Both the type III SMA father and type II SMA son carried the homozygous deletion of the telSMN gene. One SMA I patient showed an SMN hybrid gene, probably created by intrachromosomal deletion. In two haploidentical type II SMA sibs, the telSMN exon 7 was absent on one chromosome, while the other carried an A-->G transition 96 bp upstream of exon 7 of the telSMN gene, a potential disease-causing mutation in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号