首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.  相似文献   

2.
The stomata and green cells in wheat ears were observed by electron microscopy, and the photosynthetic activity of the ears was measured with an infra-red gas analyser. 1. The awn, glume, palea, lemma, and axis were photosynthetic organs on the wheat ears. Stomata, however, only existed at the green parts in these organs. The ears which had longer awns and higher content of chlorophyll usually showed relatively high photosynthetic rates. 2. The structure and photochemical activity of the chloroplasts in the awns were similar to those in the leaves. 3. The photosynthetic rate of ears could be promoted by increasing light intensity and CO2 concentration. The CO2 compensation point (110 ppm) and the light compensation point (200μE·m-2 · s-1)of ears were higher than those of leaves. 4. The wheat ears had photoresplration. The CO2-releasing rate of the ears under light could be promoted by high O3 concentration. The CO2 outburst and the oscillation in photosynthesis in the awns could be measured. These results suggested that the photosynthetic pathway in the wheat ears was Cspathway. 5. The highest photosynthetic rate of ears emerged at flowering stage. Thereafter, the photosynthetic activity of the ears fell down as the chlorophyll content declined and the grains were filled up.  相似文献   

3.
Quantification of the damaging effects of pathogens on diseased plants and inclusion of these damaging functions in crop simulation models is of great importance for a more complete understanding of yield response to diseases. In this study, the effect of Septoria tritici blotch (STB) on net photosynthetic and dark respiration rates of wheat flag leaves was quantified. Bastiaans' model: Y=(1-x)beta was used to characterize the relationship between relative leaf photosynthesis (Y, considering Ynet and Ygross) and STB severity (with x the proportion of the diseased area). The value of beta indicates whether the effect of disease on photosynthesis is larger (beta >1), lower (beta <1), or equal (beta =1) to the proportion of visible diseased area. In the experimental conditions used here, leaf nitrogen content (in a range from 0.18 to 0.24 mg cm(-2)), and leaf number (flag and second leaves) did not significantly influence the effect of STB on leaf gas exchange. By contrast, damage depended strongly on the developmental stages of the STB lesions. STB lesions had no effect on inoculated leaves before visible symptoms appeared. Chlorotic symptoms had less effect on leaf net photosynthetic rate than could be accounted for by the visible diseased area (betanet=0.81). The effect of necrotic lesions on the leaf net photosynthetic capacity was slightly greater than that accounted for by visible symptoms (betanet=1.35). Our results suggest that the effect of the necrotic symptoms on the net photosynthesis expressed by betanet >1 is due to a combination of a decrease in the gross photosynthesis (betagross still >1) and to an increase in the dark respiration rate (betagross相似文献   

4.
A technique, using 14CO2, for measuring the rate of photosynthesis and the distribution of synthesized carbohydrate in the same plant, applied to wheat plants at intervals from 10 days before anthesis until the plants were no longer green, showed that the rate of photosynthesis by the leaves and ears decreased steadily; it was much less for ears than for leaves. The proportion of carbohydrate translocated to the grain was very small at and before anthesis, but increased rapidly afterwards. Integration of these data provided estimates of yield based on physiological components which showed good agreement with measured yields at harvest, though varietal differences in observed yield could not be explained. An experiment in which ears were removed from plants 7 days after anthesis showed that photosynthetic activity was not limited by the size of the ‘sink’ to which photosynthates were translocated.  相似文献   

5.
Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22–29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5‐bisphosphate carboxylase/oxygenase)‐limited photosynthesis but also from electron transport‐limited photosynthesis; as a result, photosynthetic rates could be improved for both light‐saturated and light‐limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ‐plasm, especially the variation in parameters determining light‐limited photosynthesis.  相似文献   

6.
The presence of awns doubled the net photosynthetic rate of wheat ears and also increased the proportion of 14CO2 assimilated by the ear that moved to the grain. The effect of water supply on photosynthesis and movement of assimilates was greater for leaves than ears, so that drought increased the proportion of assimilate contributed by ear photosynthesis to grain filling from 13% to 24% in the awnless ears, and from 34% to 43% in the awned ears. 14C assimilated by the ears was most important to the economy of the upper spikelets and to the distal florets in each spikelet, whereas flag leaf assimilate went mainly to the spikelets in the lower half of the ear, and to the proximal florets. Awns increased grain yield in the dry but not in the irrigated treatment, despite the large contribution of awned ears to grain filling. Either the supply of assimilate did not limit grain yield when water supply was not limiting, or there were compensating disadvantages to awns. However, they did not seem to have any adverse effect on the development of the upper florets, nor did they reduce grain number per ear.  相似文献   

7.
The rate of photosynthesis of ears, flag leaves and second leaves of two varieties of wheat, and the proportion of synthesized carbohydrate translocated from them to the grain, were determined in the field using 14CO2. The relationship of rate of photosynthesis to changes in age and in incident radiation was expressed by parameters determining hyperbolic functions. These were combined with empirical equations describing the increase with age in the proportion of photosynthate stored in the grain, to form a mathematical model by which yield was determined from physiological parameters. This model gave estimates of yield in reasonable agreement with measured values.  相似文献   

8.
Photosynthesis in non‐foliar organs plays an important role in crop growth and productivity, and it has received considerable research attention in recent years. However, compared with the capability of photosynthetic CO2 fixation in leaves, the distinct attributes of photosynthesis in the non‐foliar organs of wheat (a C3 species) are unclear. This review presents a comprehensive examination of the photosynthetic characteristics of non‐foliar organs in wheat. Compared with leaves, non‐foliar organs had a higher capacity to refix respired CO2, higher tolerance to environmental stresses and slower terminal senescence after anthesis. Additionally, whether C4 photosynthetic metabolism exists in the non‐foliar organs of wheat is discussed, as is the advantage of photosynthesis in non‐foliar organs during times of abiotic stress. Introducing the photosynthesis‐related genes of C4 plants into wheat, which are specifically expressed in non‐foliar organs, can be a promising approach for improving wheat productivity.  相似文献   

9.
有机物沟埋还田与花后灌水配合对增加玉米田保水供水能力,提高玉米花后光合性能、实现节水增产有重要意义.本试验以郑单958为供试材料,设置有机物沟埋还田和花后灌水量两个因素,有机物沟埋还田包括不还田(M0)、秸秆单还田(M1)和牛粪秸秆混合还田(M2)3个还田类型,花后灌水量包括450 mm(W1)和325 mm(W2)2个水平,研究了其对玉米穗位叶光合性能、光系统Ⅱ(PSⅡ)效率和产量等的影响.结果表明:与秸秆单还田比较,牛粪秸秆混合还田有效提高了玉米花后光合能力和各器官的干物质积累量;与节水灌溉相比,正常灌溉加强了有机物还田对玉米光合能力的促进作用.牛粪秸秆混合还田与正常灌溉结合可显著提高玉米花后叶片的光合速率(Pn)、气孔导度(gs)和蒸腾速率(Tr),降低胞间CO2浓度(Ci);提高玉米花后叶片PSⅡ的最大光化学效率(φpo)和捕获的激子将电子传递到电子传递链中QA下游的电子受体的概率(Ψo);改善花后叶片光能利用率,维持花后叶片较高的光合性能;同时增加花后玉米各器官干物质的量,提高干物质总积累量和转运能力,有利于花后同化物对籽粒的分配,最终获得高产.节水灌溉降低了叶片的光合性能,造成产量的下降;但配合牛粪秸秆混合还田与不还田处理相比,水分利用效率、籽粒增长速率和增产效果均优于正常灌水.这表明牛粪秸秆混合还田与正常灌溉结合可有效提高玉米花后光合性能,增加干物质积累量,促进玉米增产;牛粪秸秆混合还田与节水灌溉结合一定程度上降低了因减少灌溉量造成的减产.  相似文献   

10.
A model to predict Septoria tritici blotch (STB) and leaf rust effects on wheat growth was constructed and evaluated in two steps. At the leaf scale, Bastiaans' approach that predicts the relative photosynthesis of a wheat leaf infected with a single disease, was extended to the case of two diseases, one biotrophic and one necrotrophic by considering the leaf rust-STB complex. A glasshouse experiment with flag leaves inoculated either singly with one disease or with two diseases combined was performed to check the leaf damage model. No interaction of the two diseases on photosynthesis loss was observed when they occurred simultaneously on the same leaf. In a second step, the single-leaf model was extended to the canopy scale to model the effects of the leaf rust-STB complex on the growth of a wheat crop. The model predicts the effects of disease on the growth of an affected crop relative to the growth of a healthy crop. The canopy model accounted for different contributions to photosynthetic activity of leaf layers, derived from their position in the canopy and their natural leaf senescence. Treatments differing in nitrogen fertilization, microclimatic conditions, and wheat cultivars were implemented in a field experiment to evaluate the model. The model accurately estimated the effect of disease on crop growth for each cultivar, with differences from experimental values lower than 10%, which suggests that this model is well suited to aid an understanding of disease effects on plant growth. A reduction in green leaf area was the main effect of disease in these field experiments and STB accounted for more than 70% of the reduction in plant growth. Simulations suggested that the production of rust spores may result in a loss of biomass from diseased crops and that stem photosynthesis may need to be considered in modelling diseased crop growth.  相似文献   

11.
不同年代推出的冬小麦品种叶片气体交换日变化的差异   总被引:3,自引:0,他引:3  
选择 6 0年来北京地区广泛种植的 3个冬小麦 (TriticumaestivumL .)品种 ,在相同的环境条件下种植。为了研究它们的产量与单位叶面积的净光合速率 (Pn)的关系 ,测定了不同生育期Pn、蒸腾速率 (Tr)的日变化 ,并用Pn/Tr计算叶片瞬时的水分利用率 (WUE)。结果表明 :单位叶面积净光合速率与产量之间的关系随生育期不同而变化。在拔节期高产品种“京冬 8号”(九十年代推出 )的光合速率和蒸腾速率在一天中总是最高 ,一天中差异最大时 ,分别比低产品种“燕大 1817”(四十年代推出 )高 77%和 6 9%。而其水分利用率却小于低产品种。这种差异随小麦的生长发育而变化 ,一般上午 10 :0 0前“京冬 8号”的光合速率较高 ,而 10 :0 0后“燕大 1817”的光合速率较高。到腊熟期 ,低产品种“燕大 1817”的光合速率在一天中始终最高。蒸腾速率的变化规律与光合速率相似 ,然而“燕大1817”叶片的水分利用率一般最高。与现代推出的品种不同 ,老品种“燕大 1817”叶片的光合作用午休现象不明显 ,说明它可能具有一定的抗光氧化性。我们认为 ,在品种改良的过程中 ,叶片光合作用的潜力可能有所提高 ,但它的抗光氧化性可能减弱。  相似文献   

12.
Potassium is one of the principle plant nutrients underpinning crop yield production and quality determination. While involved in many physiological processes, potassium's impact on water relations, photosynthesis, assimilate transport and enzyme activation can have direct consequences on crop productivity. Potassium deficiency can lead to a reduction in both the number of leaves produced and the size of individual leaves. Coupling this reduced amount of photosynthetic source material with a reduction in the photosynthetic rate per unit leaf area, and the result is an overall reduction in the amount of photosynthetic assimilates available for growth. The production of less photosynthetic assimilates and reduced assimilate transport out of the leaves to the developing fruit greatly contributes to the negative consequences that deficiencies of potassium have on yield and quality production. Goals aimed toward increasing crop productivity and improved quality dictate either increased potassium supply or more efficient use of potassium. Developing plants that more efficiently use potassium might be a worthwhile goal for geneticists.  相似文献   

13.
植物光效生态学研究 Ⅰ.小麦光合作用午休的原因   总被引:11,自引:2,他引:9  
余彦波  刘桐华 《生态学报》1985,5(4):336-342
本文报道了用小麦作材料,从作物生理生态特性方面研究了小麦光合作用午休的原因。试验结果证明:在中午前后,小麦叶片气孔开关数目与光合作用午休密切相关;大部分小麦光合作用午休与生物节律无关;中午遮光后,光合作用加强和生物学产量提高,说明光合产物的累积是形成光合作用午休的重要因素之一。  相似文献   

14.
光合性能选种法研究   总被引:1,自引:0,他引:1  
生物良种的选择,历来是人类最关心的事,本文讨论的是植物的选种方法,我们在品质基本相同的几个品种中选择最优品种.这里最优品种指的就是产量最高者.植物的产量是由光合作用所产生的生物量,所以,光合性能强的物种常为最优品种.本文所介绍的选种方法,就是根据不同品种的光合性能的强弱来研究品种的优劣,而植物光合性能强弱可以通过植物的光合总量来确定.本文计算了三个猕猴桃品种的光合总量,其中光合总量最高者为最优品种(产量最高),这与生产实践完全一致,所以光合性能选种法得到了生产实践的验证.  相似文献   

15.
张永平  张英华  黄琴  王志敏 《生态学报》2013,33(12):3657-3667
建立高光效低耗水的群体结构是小麦节水高产栽培的核心内容。为此,需要明确节水高产群体的适宜调控指标。以穗叶比(单位面积穗数与上三叶总面积之比,穗/m2)为指标,在不同品种、不同灌水和种植密度条件下研究了小麦群体穗叶比的变化,并分析了穗叶比与群体光合性能、水分利用的关系。结果表明,在相同密度下,随着灌水减少,孕穗、开花和灌浆期的穗叶比均相应增大;在限水灌溉下,随密度增加穗叶比也相应增加。不同品种的穗叶比也存在明显差异。在适宜叶面积基础上,随穗叶比增加,群体中非叶面积指数(NAI)增加,冠层内光照状况明显改善,群体光合效率提高;非叶器官贮藏物质转移率增加,收获指数提高。在一定范围内,随穗叶比增加产量明显增加,而耗水量显著减少,从而使水分利用效率得到提高。研究认为,群体穗/叶比是衡量小麦节水栽培库源关系是否协调的适宜指标。试验中小麦节水省肥高产栽培适宜的穗叶比值为230—270穗/m2。  相似文献   

16.
To understand the physiological reasons for poor yield of the second rice crop in southern China challenged by low temperature. The authors investigated the effects of chilling temperature on photosynthesis and the activity of fructose 1, 6-diphosphatase (FBPase) of flag leaves at milky stage using two hybrid rice varieties with different cold tolerance. The results indicated that chilling temperature caused decreases of photosynthetic efficiency and FBPase activity in detached flag leaves. The decline of photosynthetic efficiency and FBPase activity was greater in Shanyou-63 which is as cold sensitive as its parents than in Xiuyou-57 which is cold tolerant like its parents. The milky stage is the period of the fastest grain filling. The decreased the yield of the second rice crop caused by natural low temperature was associated with decline of photosynthesis and the abilities of adaption and adjustment of FBPase in attached flag leaves. The relationship between the effects of chilling temperature on photosynthesis and photosynthate transport and the yield formed by grain was discussed.  相似文献   

17.
为了解寒露风引起晚稻减产的生理原因,本试验以两个不同抗冷力的杂交水稻组合为材料,研究了低温对水稻乳熟期剑叶光合作用与果糖1,6-二磷酸酯酶(FBPase)活性的影响。结果表明:低温引起离体剑叶光合效率与FBPase 活性下降,不抗冷的“汕优63”及其亲本的光合效率与FBPase 活性比抗冷的“秀优57”及其亲本下降幅度较大。乳熟期是籽粒灌浆的高峰期,自然低温(寒露风)造成晚造水稻减产与乳熟期连体剑叶的光合作用下降和FBPase 对低温的适应和调节能力有关  相似文献   

18.
Ear photosynthesis may be an important source of C for grain growth in water-stressed plants of cereals. The main objectives of this work were to determine the stability of the photosynthetic apparatus and the photochemical efficiency of ears in plants subjected to post-anthesis drought. Plants of wheat ( Triticum aestivum L. cv. Granero INTA) were grown in pots under a rain shelter and subjected to water stress (soil water potential around −0.6 to −0.8 MPa) starting 4  days after anthesis. Post-anthesis drought substantially accelerated the loss of chlorophyll, Rubisco and the light-harvesting complex of photosystem II (LHCII) in the flag leaf, but the degradation of these photosynthetic components was much less affected by water deficit in awns and ear bracts. Quantum yield of PSII (ΦPSII) decreased in leaves of water-stressed plants. In contrast, ear bracts had a higher ΦPSII than leaves, and ΦPSII of ear bracts did not decrease at all in response to drought. Removing the grains immediately before fluorescence measurements (less than 30 min) slightly reduced ΦPSII, indicating that CO2 supplied by grain respiration may contribute to the high photochemical efficiency of ears in droughted plants. However, other factors may be involved in maintaining high ΦPSII, since even in the absence of grains ΦPSII remained much higher in ear bracts than in the flag leaf. The relative stability of ear photosynthetic components and their relatively high photochemical efficiency may help to maintain ear photosynthesis during the grain filling period in droughted plants.  相似文献   

19.
Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.  相似文献   

20.
The rates of gross photosynthesis of the flag leaf and the nextleaf below (second leaf) in crops of winter wheat were estimatedfrom the 14C uptake of the leaves after exposure to short pulsesof 14CO2. The photosynthetic rates of both leaves during thegrain-filling period decreased with increase in nitrogen fertilizerbecause the intensity of photosynthetically active radiationwas less at the surface of the leaves in the dense crops withadditional nitrogen. In addition, the rate of photosynthesisat saturating light intensity was slightly decreased by nitrogen.The effects of nitrogen, in decreasing the rate of photosynthesisper unit area of leaf and in increasing the leaf-area indexof the top two leaves, were such that the photosynthetic productivityper unit area of land of the flag leaf was increased by nitrogenbut the productivity of the second leaf was unaffected. Applying180 kg N ha–1 increased the productivity of the top twoleaves by a factor of 2.3 but increased grain yield by only1.8. The photosynthetic productivity of the second leaf duringthe grain-filling period was about half that of the flag leaf. There was no difference in photosynthetic rate per unit areaof leaves of Cappelle-Desprez and Maris Huntsman which couldaccount for the larger yield of the latter cultivar. There wasa slight indication that the leaves of the semi-dwarf cultivarsMaris Fundin and Hobbit photosynthesized faster than those ofMaris Huntsman. Triticum aestivum L., winter wheat, photosynthesis, nitrogen fertilizer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号