首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subclonal components of consensus fitness in an RNA virus clone.   总被引:15,自引:11,他引:4       下载免费PDF全文
Most RNA virus populations exhibit extremely high mutation frequencies which generate complex, genetically heterogeneous populations referred to as quasi-species. Previous work has shown that when a large spectrum of the quasi-species is transferred, natural selection operates, leading to elimination of noncompetitive (inferior) genomes and rapid gains in fitness. However, whenever the population is repeatedly reduced to a single virion, variable declines in fitness occur as predicted by the Muller's ratchet hypothesis. Here, we quantitated the fitness of 98 subclones isolated from an RNA virus clonal population. We found a normal distribution around a lower fitness, with the average subclone being less fit than the parental clonal population. This finding demonstrates the phenotypic diversity in RNA virus populations and shows that, as expected, a large fraction of mutations generated during virus replication is deleterious. This clarifies the operation of Muller's ratchet and illustrates why a large number of virions must be transferred for rapid fitness gains to occur. We also found that repeated genetic bottleneck passages can cause irregular stochastic declines in fitness, emphasizing again the phenotypic heterogeneity present in RNA virus populations. Finally, we found that following only 60 h of selection (15 passages in which virus yields were harvested after 4 h), RNA virus populations can undergo a 250% average increase in fitness, even on a host cell type to which they were already well adapted. This is a remarkable ability; in population biology, even a much lower fitness gain (e.g., 1 to 2%) can represent a highly significant reproductive advantage. We discuss the biological implications of these findings for the natural transmission and pathogenesis of RNA viruses.  相似文献   

2.
The population dynamics of RNA viruses have an important influence on fitness variation and, in consequence, on the adaptative potential and virulence of this ubiquitous group of pathogens. Earlier work with vesicular stomatitis virus showed that large population transfers were reproducibly associated with fitness increases, whereas repeated transfers from plaque to plaque (genetic bottlenecks) lead to losses in fitness. We demonstrate here that repeated five-plaque to five-plaque passage series yield long-term fitness stability, except for occasional stochastic fitness jumps. Repeated five-plaque passages regularly alternating with two consecutive large population transmissions did not cause fitness losses, but did limit the size of fitness gains that would otherwise have occurred. These results underscore the profound effects of bottleneck transmissions in virus evolution.  相似文献   

3.
Repeated clone-to-clone (genetic bottleneck) passages of an RNA phage and vesicular stomatitis virus have been shown previously to result in loss of fitness due to Muller's ratchet. We now demonstrate that Muller's ratchet also operates when genetic bottleneck passages are carried out at 37 rather than 32 degrees C. Thus, these fitness losses do not depend on growth of temperature-sensitive (ts) mutants at lowered temperatures. We also demonstrate that during repeated genetic bottleneck passages, accumulation of deleterious mutations does occur in a stepwise (ratchet-like) manner as originally proposed by Muller. One selected clone which had undergone significant loss of fitness after only 20 genetic bottleneck passages was passaged again in clone-to-clone series. Additional large losses of fitness were observed in five of nine independent bottleneck series; the relative fitnesses of the other four series remained close to the starting fitness. In sharp contrast, when the same selected clone was transferred 20 more times as large populations (10(5) to 10(6) PFU transferred at each passage), significant increases in fitness were observed in all eight passage series. Finally, we selected several clones which had undergone extreme losses of fitness during 20 bottleneck passages. When these low-fitness clones were passaged many times as large virus populations, they always regained very high relative fitness. We conclude that transfer of large populations of RNA viruses regularly selects those genomes within the quasispecies population which have the highest relative fitness, whereas bottleneck transfers have a high probability of leading to loss of fitness by random isolation of genomes carrying debilitating mutations. Both phenomena arise from, and underscore, the extreme mutability and variability of RNA viruses.  相似文献   

4.
Changes in adaptability of vesicular stomatitis virus (VSV) upon treatment with chemical mutagens have been investigated. Results showed no improvement in virus viability or adaptability at any given level of mutagenesis. In fact, increasing inhibition of virus production and adaptability was observed with increasing levels of mutagenesis. This was true for all tested VSV variants replicating either in changing or constant host cell environments. Results also showed that mutagen-treated RNA virus populations which had undergone severe fitness declines were able to recover lost fitness completely after several large-population passages in BHK21, cells. The present findings illustrate the highly optimized states of RNA viruses and their potential to adapt readily. These results are significant for the possible development of specific antiviral agents designed to be mutagenic.  相似文献   

5.
Many viral pathogens cycle between humans and insects. These viruses must have evolved strategies for rapid adaptation to different host environments. However, the mechanistic basis for the adaptation process remains poorly understood. To study the mosquito-human adaptation cycle, we examined changes in RNA structures of the dengue virus genome during host adaptation. Deep sequencing and RNA structure analysis, together with fitness evaluation, revealed a process of host specialization of RNA elements of the viral 3’UTR. Adaptation to mosquito or mammalian cells involved selection of different viral populations harvesting mutations in a single stem-loop structure. The host specialization of the identified RNA structure resulted in a significant viral fitness cost in the non-specialized host, posing a constraint during host switching. Sequence conservation analysis indicated that the identified host adaptable stem loop structure is duplicated in dengue and other mosquito-borne viruses. Interestingly, functional studies using recombinant viruses with single or double stem loops revealed that duplication of the RNA structure allows the virus to accommodate mutations beneficial in one host and deleterious in the other. Our findings reveal new concepts in adaptation of RNA viruses, in which host specialization of RNA structures results in high fitness in the adapted host, while RNA duplication confers robustness during host switching.  相似文献   

6.
West Nile virus (WNV) is similar to other RNA viruses in that it forms genetically complex populations within hosts. The virus is maintained in nature in mosquitoes and birds, with each host type exerting distinct influences on virus populations. We previously observed that prolonged replication in mosquitoes led to increases in WNV genetic diversity and diminished pathogenesis in mice without remarkable changes to the consensus genome sequence. We therefore sought to evaluate the relationships between individual and group phenotypes in WNV and to discover novel viral determinants of pathogenesis in mice and fitness in mosquitoes and birds. Individual plaque size variants were isolated from a genetically complex population, and mutations conferring a small-plaque and mouse-attenuated phenotype were localized to the RNA helicase domain of the NS3 protein by reverse genetics. The mutation, an Asp deletion, did not alter type I interferon production in the host but rendered mutant viruses more susceptible to interferon compared to wild type (WT) WNV. Finally, we used an in vivo fitness assay in Culex quinquefasciatus mosquitoes and chickens to determine whether the mutation in NS3 influenced fitness. The fitness of the NS3 mutant was dramatically lower in chickens and moderately lower in mosquitoes, indicating that RNA helicase is a major fitness determinant of WNV and that the effect on fitness is host specific. Overall, this work highlights the complex relationships that exist between individual and group phenotypes in RNA viruses and identifies RNA helicase as an attenuation and fitness determinant in WNV.  相似文献   

7.
RNA viruses offer a unique opportunity for the study of evolution at the molecular level. Recent experiments involving clonal populations of RNA viruses have shown that competition among virus strains of approximately equal relative fitness can result in the eventual competitive exclusion of one of the species. As competition proceeds in time, both the winners and the losers exhibited absolute gains in fitness, consistent with the "Red Queen" hypothesis of evolution. Further experiments involving closely related evolving quasispecies revealed a highly predictable nonlinear behavior suggesting a deterministic component in the underlying quasispecies dynamics. This is apparently in contradiction with the standard view of RNA virus evolution as a highly unpredictable process. In this paper we present a simple model which allows previous hypothesis to be tested and provides an interpretation for the observed experimental results.  相似文献   

8.
Genetic bottlenecks are important events in the genetic diversification of organisms and colonization of new ecological niches. Repeated bottlenecking of RNA viruses often leads to fitness losses due to the operation of Muller's ratchet. Herein we use vesicular stomatitis virus to determine the transmission population size which leads to fitness decreases of virus populations. Remarkably, the effective size of a genetic bottleneck associated with fitness loss is greater when the fitness of the parental population increases. For example, for starting virus populations with low fitness, population transfers of five-clone-to-five-clone passages resulted in a fitness increase. However, when a parental population with high fitness was transferred, 30-clone-to-30-clone passages were required simply to maintain fitness values.  相似文献   

9.
We describe a sensitive, internally controlled method for comparing the genetic adaptability and relative fitness of virus populations in constant or changing host environments. Certain monoclonal antibody-resistant mutants of vesicular stomatitis virus can compete equally during serial passages in mixtures with the parental wild-type clone from which they were derived. These genetically marked "surrogate wild-type" neutral mutants, when mixed with wild-type virus, allow reliable measurement of changes in virus fitness and of virus adaptation to different host environments. Quantitative fitness vector plots demonstrate graphically that even clones of an RNA virus are composed of complex variant populations (quasispecies). Variants of greater fitness (competitive replication ability) were selected within very few passages of virus clones in new host cells or animals. Even clones which were well adapted to BHK21 cells gained further fitness during repeated passages in BHK21 cells.  相似文献   

10.
Within hosts, RNA viruses form populations that are genetically and phenotypically complex. Heterogeneity in RNA virus genomes arises due to error-prone replication and is reduced by stochastic and selective mechanisms that are incompletely understood. Defining how natural selection shapes RNA virus populations is critical because it can inform treatment paradigms and enhance control efforts. We allowed West Nile virus (WNV) to replicate in wild-caught American crows, house sparrows and American robins to assess how natural selection shapes RNA virus populations in ecologically relevant hosts that differ in susceptibility to virus-induced mortality. After five sequential passages in each bird species, we examined the phenotype and population diversity of WNV through fitness competition assays and next generation sequencing. We demonstrate that fitness gains occur in a species-specific manner, with the greatest replicative fitness gains in robin-passaged WNV and the least in WNV passaged in crows. Sequencing data revealed that intrahost WNV populations were strongly influenced by purifying selection and the overall complexity of the viral populations was similar among passaged hosts. However, the selective pressures that control WNV populations seem to be bird species-dependent. Specifically, crow-passaged WNV populations contained the most unique mutations (~1.7× more than sparrows, ~3.4× more than robins) and defective genomes (~1.4× greater than sparrows, ~2.7× greater than robins), but the lowest average mutation frequency (about equal to sparrows, ~2.6× lower than robins). Therefore, our data suggest that WNV replication in the most disease-susceptible bird species is positively associated with virus mutational tolerance, likely via complementation, and negatively associated with the strength of selection. These differences in genetic composition most likely have distinct phenotypic consequences for the virus populations. Taken together, these results reveal important insights into how different hosts may contribute to the emergence of RNA viruses.  相似文献   

11.
The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses.  相似文献   

12.
Populations experiencing similar selection pressures can sometimes diverge in the genetic architectures underlying evolved complex traits. We used RNA virus populations of large size and high mutation rate to study the impact of historical environment on genome evolution, thus increasing our ability to detect repeatable patterns in the evolution of genetic architecture. Experimental vesicular stomatitis virus populations were evolved on HeLa cells, on MDCK cells, or on alternating hosts. Turner and Elena (2000. Cost of host radiation in an RNA virus. Genetics. 156:1465-1470.) previously showed that virus populations evolved in single-host environments achieved high fitness on their selected hosts but failed to increase in fitness relative to their ancestor on the unselected host and that alternating-host-evolved populations had high fitness on both hosts. Here we determined the complete consensus sequence for each evolved population after 95 generations to gauge whether the parallel phenotypic changes were associated with parallel genomic changes. We also analyzed the patterns of allele substitutions to discern whether differences in fitness across hosts arose through true pleiotropy or the presence of not only a mutation that is beneficial in both hosts but also 1 or more mutations at other loci that are costly in the unselected environment (mutation accumulation [MA]). We found that ecological history may influence to what extent pleiotropy and MA contribute to fitness asymmetries across environments. We discuss the degree to which current genetic architecture is expected to constrain future evolution of complex traits, such as host use by RNA viruses.  相似文献   

13.
Continuous, persistent replication of a wild-type strain of vesicular stomatitis virus in cultured sandfly cells for 10 months profoundly decreased virus replicative fitness in mammalian cells and greatly increased fitness in sandfly cells. After persistent infection of sandfly cells, fitness was over 2,000,000-fold greater than that in mammalian cells, indicating extreme selective differences in the environmental conditions provided by insect and mammalian cells. The sandfly-adapted virus also showed extremely low fitness in mouse brain cells (comparable to that in mammalian cell cultures). It also showed an attenuated phenotype, requiring a nearly millionfold higher intracranial dose than that of its parent clone to kill mice. A single passage of this adapted virus in BHK-21 cells at 37 degrees C restored fitness to near neutrality and also restored mouse neurovirulence. These results clearly illustrate the enormous capacity of RNA viruses to adapt to changing selective environments.  相似文献   

14.
We showed earlier that transfers of large populations of RNA viruses lead to fitness gains and that repeated genetic bottleneck transfers result in fitness losses due to Muller's ratchet. In the present study, we examined the effects of genetic bottleneck passages intervening between population passages, a process akin to some natural viral transmissions, using vesicular stomatitis virus as a model. Our findings show that the pronounced fitness increases that occur during two successive population passages cannot overcome the fitness decreases caused by a single intervening genetic bottleneck passage. The implications for natural transmissions of RNA viruses are discussed.  相似文献   

15.
We show in a simple theoretical quasispecies model that the replication dynamics of hepatitis C virus and a related model-system, the bovine viral diarrhoea virus, result in an effective reduction of RNA templates in infected cells. Viral fitness does not translate directly into RNA sequence replication efficiency, and hence the abundance of the viral master sequences diminishes over time. Our results suggest that genes not involved in RNA replication accumulate mutations over time because they do not undergo selection during this phase. The selection of viral RNA occurs not only during replication but also during the ensuing stages of the viral life cycle: (i) envelopment of viral RNA and (ii) successful infection of other cells, which also requires functionality of non-replicative genes. In particular, viral fitness requires the ability of the genome to encode structural proteins which do not encounter selective pressure during RNA replication. We conclude by discussing the potential value of antiviral drugs which inhibit selection on parts of the viral genome.  相似文献   

16.
Plaque-to-plaque transfers of RNA viruses lead to accumulation of mutations and fitness decrease. To test whether continuing plaque-to-plaque transfers would lead to viral extinction, we have subjected several low fitness foot-and-mouth disease virus (FMDV) clones to up to 130 successive plaque transfers, and have analyzed the evolution of plaque titers and genomic nucleotide sequences. No case of viral extinction could be documented. Some low fitness clones that posses an internal poly(A) tract evaded extinction by modifying the length or base composition of the poly(A) tract. The comparison of entire genomic sequences of FMDV clones at increasing plaque transfer number revealed that mutations accumulated at a uniform rate, and that they were distributed unevenly along the genome. Clusters of mutations were identified at different genomic sites in two plaque transfer lineages. Mutation clustering appears to occur stochastically and could not be related to fixation of compensatory mutations. The results document resistance of viral clones to extinction, and suggest that mutation clustering may be a mechanism of genetic diversification of low fitness virus.  相似文献   

17.
RNA viruses have high error rates, and the resulting quasispecies may aid survival of the virus population in the presence of selective pressure. Therefore, it has been theorized that RNA viruses require high error rates for survival, and that a virus with high fidelity would be less able to cope in complex environments. We previously isolated and characterized poliovirus with a mutation in the viral polymerase, 3D-G64S, which confers resistance to mutagenic nucleotide analogs via increased fidelity. The 3D-G64S virus was less pathogenic than wild-type virus in poliovirus-receptor transgenic mice, even though only slight growth defects were observed in tissue culture. To determine whether the high-fidelity phenotype of the 3D-G64S virus could decrease its fitness under a defined selective pressure, we compared growth of the 3D-G64S virus and 3D wild-type virus in the context of a revertible attenuating point mutation, 2C-F28S. Even with a 10-fold input advantage, the 3D-G64S virus was unable to compete with 3D wild-type virus in the context of the revertible attenuating mutation; however, in the context of a non-revertible version of the 2C-F28S attenuating mutation, 3D-G64S virus matched the replication of 3D wild-type virus. Therefore, the 3D-G64S high-fidelity phenotype reduced viral fitness under a defined selective pressure, making it likely that the reduced spread in murine tissue could be caused by the increased fidelity of the viral polymerase.  相似文献   

18.
The direct-repeat elements (dr1) of avian sarcoma virus (ASV) and leukosis virus have the properties of constitutive transport elements (CTEs), which facilitate cytoplasmic accumulation of unspliced RNA. It is thought that these elements represent binding sites for cellular factors. Previous studies have indicated that in the context of the avian sarcoma virus genome, precise deletion of both ASV dr1 elements results in a very low level of virus replication. This is characterized by a decreased cytoplasmic accumulation of unspliced RNA and a selective increase in spliced src mRNA. Deletion of either the upstream or downstream dr1 results in a delayed-replication phenotype. To determine if the same regions of the dr1 mediate inhibition of src splicing and unspliced RNA transport, point mutations in the upstream and downstream elements were studied. In the context of viral genomes with single dr1 elements, the effects of the mutations on virus replication and increases in src splicing closely paralleled the effects of the mutations on CTE activity. For mutants strongly affecting CTE activity and splicing, unspliced RNA but not spliced RNA turned over in the nucleus more rapidly than wild-type RNA. In the context of wild-type virus containing two dr1 elements, mutations of either element that strongly affect CTE activity caused a marked delay of virus replication and a selective increase in src splicing. However, the turnover of the mutant unspliced RNA as well as the spliced mRNA species did not differ significantly from that of the wild type. These results suggest the dr1 elements in ASV act to selectively inhibit src splicing and that both elements contribute to the fitness of the wild-type virus. However, a single dr1 element is sufficient to stabilize unspliced RNA.  相似文献   

19.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

20.
Sanjuán R  Cuevas JM  Moya A  Elena SF 《Genetics》2005,170(3):1001-1008
We have explored the patterns of fitness recovery in the vesicular stomatitis RNA virus. We show that, in our experimental setting, reversions to the wild-type genotype were rare and fitness recovery was at least partially driven by compensatory mutations. We compared compensatory adaptation for genotypes carrying (1) mutations with varying deleterious fitness effects, (2) one or two deleterious mutations, and (3) pairs of mutations showing differences in the strength and sign of epistasis. In all cases, we found that the rate of fitness recovery and the proportion of reversions were positively affected by population size. Additionally, we observed that mutations with large fitness effect were always compensated faster than mutations with small fitness effect. Similarly, compensatory evolution was faster for genotypes carrying a single deleterious mutation than for those carrying pairs of mutations. Finally, for genotypes carrying two deleterious mutations, we found evidence of a negative correlation between the epistastic effect and the rate of compensatory evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号