首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether epidermal growth factor (EGF)-induced preimplantation mouse embryo development and function are mediated by EGF-specific protein tyrosine phosphorylation (PTP). In situ cross-linking and autophosphorylation studies showed that EGF receptor (EGF-R) in Day 4 mouse blastocysts is a protein of approximately 170 kDa that is phosphorylated when exposed to EGF and ATP. Furthermore, EGF induced about a twofold increase in protein tyrosine kinase (PTK) activity in Day 4 blastocysts when incubated in the presence of a peptide substrate with a tyrosine moiety and ATP. RG 50864, a specific inhibitor of EGF-dependent PTK, diminished autophosphorylation of the 170-kDa protein and completely blocked PTK activity in the blastocyst induced by EGF. However, this inhibitor did not affect EGF binding to the embryonic cell surface. In contrast, an inactive tyrphostin compound, RG 50862, did not alter EGF-induced PTK activity in the blastocyst. These findings led us to examine the effects of these tyrphostin compounds on preimplantation mouse embryo development and blastocyst hatching in vitro. RG 50864, in a dose-dependent manner, inhibited EGF-dependent development of 2-cell embryos to blastocysts and the number of cells per blastocyst. This inhibitor also antagonized EGF-induced zona-hatching of blastocysts formed from 8-cell embryos in culture. However, the inhibitor was not effective in deterring transforming growth factor-beta 1-induced blastocyst formation. The inactive compound, RG 50862, had no effects on EGF-dependent blastocyst formation or zona-hatching. The data show that the effects of RG 50864 are specific and mediated by inhibition of EGF-specific PTK activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Transforming growth factor-alpha (TGF-alpha) is an autocrine growth factor for epidermal keratinocytes that can induce its own expression (autoinduction). Because the regulation of this process may be important for the control of epidermal growth, we examined the roles of EGF receptor tyrosine kinase and protein kinase C (PKC) in TGF-alpha autoinduction in cultured human keratinocytes. Antiphosphotyrosine immunoblot analysis demonstrated that EGF and TGF-alpha rapidly and markedly stimulated tyrosine phosphorylation of a 170 kDa protein in growth factor-deprived keratinocytes. This protein was identified as the EGF receptor by immuno-precipitation using anti-EGF receptor mAbs. Tyrosine phosphorylation and TGF-alpha mRNA accumulation in response to EGF and TGF-alpha were both inhibited by a monoclonal antibody against the EGF receptor and by the EGF receptor tyrosine kinase inhibitor RG50864, demonstrating the involvement of the tyrosine kinase activity of the receptor in TGF-alpha autoinduction. The monoclonal antibody inhibited keratinocyte growth and TGF-alpha autoinduction with similar potency (IC50 approximately 0.1 microgram/ml). TGF-alpha and the PKC activator tetradecanoyl phorbol 12-myristyl, 13-acetate (TPA) had similar effects on TGF-alpha steady-state mRNA levels, suggesting that PKC activation might be a downstream mediator of TGF-alpha autoinduction. However, down-regulation of more than 90% of keratinocyte PKC activity by bryostatin pretreatment abrogated the induction of TGF-alpha mRNA in response to TPA without affecting the autoinductive response or EGF-stimulated tyrosine phosphorylation. These results indicate that EGF receptor and PKC stimulate TGF-alpha gene expression by different pathways, and suggest that PKC is not required for TGF-alpha autoinduction in this system. Moreover, the fact that EGF-stimulated tyrosine phosphorylation and TGF-alpha autoinduction were not potentiated after PKC down-regulation suggests that PKC does not exert a tonic inhibitory influence on EGF receptor tyrosine kinase activity in normal human keratinocytes.  相似文献   

3.
The exact relationship between EGF-stimulated tyrosine phosphorylation, induction of the cellular proto-oncogenes c-myc and c-fos, and DNA synthesis remains uncertain. Madin-Darby Canine Kidney (MDCK) cells possess EGF receptor sites with high binding capacity, and in contrast to A431 cells, respond to EGF by increasing DNA synthesis. Following EGF stimulation of intact MDCK cells, there was a rapid and marked increase in the autophosphorylation of the EGF receptor. This was associated with an increase in the tyrosine phosphorylation of a 120 kDa phosphoprotein believed to be an endogenous substrate of this receptor kinase. The ED50 for stimulation of phosphorylation of pp120 was approximately 0.05 nM versus 1.0 nM for receptor autophosphorylation, consistent with amplification of signalling at this step in EGF action. Stimulation of DNA synthesis occurred after 12 to 24 hours and revealed even further amplification with an ED50 of about 0.1 nM. Intermediate between these events was a time-dependent activation of c-fos and c-myc gene expression. However, the ED50 for these processes was approximately 10 nM, indicating a relatively lower sensitivity of EGF for stimulation of proto-oncogene expression. Tyrphostin (RG 50864), a compound reported to inhibit specifically the EGF receptor kinase, completely blocked EGF stimulation of proto-oncogene induction. Interestingly, under the same experimental conditions, EGF receptor autophosphorylation was decreased only 60%. These data, along with the dose-response studies, indicate that proto-oncogene induction requires near maximal stimulation of EGF receptor autophosphorylation. They also suggest that, in MDCK cells, the EGF dependent induction of the c-fos and c-myc genes is not strictly correlated to the extent of EGF receptor autophosphorylation or EGF-stimulated DNA synthesis, and that EGF stimulation of DNA synthesis likely involves additional rate-limiting intermediate steps.  相似文献   

4.
Binding of EGF to cells expressing human EGF receptor stimulated rapid tyrosine phosphorylation of phospholipase C-II (PLC-II), as revealed by immunoblotting analysis with phosphotyrosine-specific antibodies. Tyrosine phosphorylation of PLC-II was stimulated by low physiological concentrations of EGF (1 nM), was quantitative, and was already maximal after a 30 sec incubation with 50 nM EGF at 37 degrees C. Interestingly, antibodies specific for PLC-II were able to coimmunoprecipitate the EGF receptor and antibodies against EGF receptor also coimmunoprecipitated PLC-II. According to this analysis, approximately 1% of EGF receptor molecules were associated with PLC-II molecules. The protein tyrosine kinase inhibitor tyrphostin RG50864, which blocks EGF-dependent cell proliferation, blocked EGF-induced tyrosine phosphorylation of PLC-II, its association with EGF receptor, and EGF-induced Ca2+ release. Hence, EGF-induced tyrosine phosphorylation of PLC-II may be a regulatory event linking the tyrosine kinase activity of EGF receptor to the PIP2 hydrolysis signaling pathway.  相似文献   

5.
In EGFR-T17 cells, which express high levels of the epidermal growth factor (EGF) receptor, addition of a saturating dose of EGF (10 nM) leads to an increase in Ins(1,4,5)P3/diacylglycerol and also to cytosolic calcium [Ca2+]i due to both intracellular redistribution and influx from extracellular medium. Pretreatment of cells with cis -unsaturated nonesterified fatty acids such as oleic acid (1 to 100 μM) inhibited EGF-stimulated Ins(1,4,5)P3 generation and Ca2+ release from intracellular stores. Furthermore, such a treatment completely suppress Ca2+ influx in a dose-dependent manner. At doses capable of suppressing such early signals, oleic acid did not alter the process of EGF-mediated internalization of the EGF/EGF-receptor complex, suggesting that [Ca2+]i rise did not mediate receptor internalization. EGF-induced cell proliferation assessed by either thymidine incorporation into DNA, direct cell counting, and microscopic observation was not altered by oleic acid, at doses able to block EGF-mediated early signals. In conclusion, suppression of Ins(1,4,5)P3 generation and [Ca2+]i rises by oleic acid did not alter EGF-receptor internalization nor EGF-induced cell mitosis. Such results suggest that [Ca2+]i rise is not instrumental for EGF-stimulated cell proliferation.  相似文献   

6.
Previously it was reported (Bremer, E.G., Schlessinger, J., and Hakomori, S.-I. (1986) J. Biol. Chem. 261, 2434-2440) that ganglioside GM3 inhibited epidermal growth factor (EGF)-stimulated phosphorylation of the EGF receptor in Triton X-100-treated preparations of human epidermoid carcinoma (A431) cell membranes. In addition, these authors reported that GM3 inhibited the growth of A431 cells. In contrast, a modified ganglioside, de-N-acetyl GM3, enhanced the EGF-dependent tyrosine kinase activity of the EGF receptor. In this work and in subsequent studies (Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S.-I. (1988) J. Biol. Chem. 263, 6296-6301), the tyrosine kinase activity of the receptor from A431 cell membranes was assayed in the presence of Triton X-100. In this report, we confirm that GM3 inhibited and de-N-acetyl GM3 stimulated EGF receptor autophosphorylation in the presence of Triton X-100. However, in the absence of detergents, ganglioside GM3 inhibited EGF-stimulated receptor autophosphorylation, whereas de-N-acetyl GM3 had no effect on EGF-stimulated receptor autophosphorylation. The effects of these gangliosides on receptor autophosphorylation were measured in both A431 cell plasma membranes and in 3T3 cell membranes permeabilized to [32P]ATP by a freeze-thaw procedure, in intact A431 cells permeabilized with alamethicin, and in intact A431 cells grown in the presence of [32P]orthophosphate. Thus, the inhibitory effect of GM3 on receptor autophosphorylation was demonstrated in the presence and in the absence of detergent; the stimulatory effect of de-N-acetyl GM3 was observed only in the presence of detergent. We also demonstrate that ganglioside GM3 inhibited EGF-stimulated growth of transfected murine fibroblasts (3T3) that express the gene for human EGF receptor (Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. (1989) J. Cell. Biochem. 39, 153-166). De-N-acetyl ganglioside GM3 had no effect on the growth of these cells. Growth of control fibroblasts, which lack endogenous EGF receptors (Pruss, R. M., and Herschman, H. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3918-3921), was not affected by the presence of either ganglioside. Similarly, ganglioside GM3, but not de-N-acetyl ganglioside GM3, inhibited the EGF-dependent incorporation of [3H]thymidine into DNA by transfected fibroblasts. Incorporation of labeled thymidine into DNA of control fibroblasts was not affected by the presence of either ganglioside. These studies indicate that ganglioside GM3, but not its deacetylated analogue, can affect EGF receptor kinase activity in intact membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
I Posner  A Gazit  C Gilon  A Levitzki 《FEBS letters》1989,257(2):287-291
In response to epidermal growth factor (EGF) and the Ca2+ ionophore A23187, the total phosphatidylinositides (IPT) increased in A431 human epidermoid carcinoma cells 1.8- and 2.0-fold and in the EGF-dependent A431/Clone 15-2 cells 3.0- and 8.0-fold, respectively, over basal levels. Both responses were inhibited by the antiproliferative agents tyrphostins, but the EGF-induced increase in IPT was inhibited to a much greater extent than that induced by the ionophore. Tyrphostins which are potent EGF-receptor kinase inhibitors were also potent in blocking the EGF-induced production of phosphoinositides. The less potent tyrphostins were found to inhibit the EGF-dependent IPT formation more weakly. These results support the notion that phospholipase C is activated through its phosphorylation by the EGF receptor.  相似文献   

8.
The cell-permeable diacylglycerol, sn-1,2-dioctanoylglycerol (DiC8), is shown to mimic the effect of tumor promoting phorbol diesters on epidermal growth factor (EGF) binding and action in intact cells. DiC8 inhibited the binding of [3H]phorbol dibutyrate to A431 cell monolayers indicating that the diacylglycerol interacts with the phorbol diester receptor. At 0.3 microM, DiC8 half-maximally inhibited the high affinity binding of 125I-EGF to A431 human epidermoid carcinoma cells. Scatchard analysis indicated that the inhibition of 125I-EGF binding was very similar to that observed in the presence of 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). DiC8 also mimicked the action of PMA to increase the phosphorylation state of the EGF receptor in 32P-labeled cells. Phosphoamino acid analysis demonstrated that DiC8 and PMA caused an increase in the level of EGF-receptor phosphoserine and phosphothreonine, whereas EGF caused an increase in the level of phosphoserine, phosphothreonine, and phosphotyrosine. Phosphopeptide mapping of the EGF receptor showed that DiC8 and PMA enhanced the phosphorylation of the same tryptic peptides. DiC8 inhibited the EGF-dependent tyrosine phosphorylation of the EGF receptor in A431 cells in a similar manner to that observed with PMA. In further experiments with quiescent Swiss 3T3 fibroblasts, DiC8 mimicked the ability of PMA to stimulate the incorporation of [methyl-3H]thymidine synergistically with low concentrations of EGF. This result indicates that DiC8 will mimic the long-term effects of PMA to regulate mitogenesis and raises the possibility that it may be active in two stage carcinogenesis. As both DiC8 and PMA stimulate the Ca2+- and phospholipid-dependent protein kinase (C-kinase) in vitro, the results support the hypothesis that the activation of C-kinase is a critical component of phorbol diester action on EGF receptor modulation and cell proliferation.  相似文献   

9.
In vitro site-directed mutagenesis was used to replace individually the three known autophosphorylation sites of the epidermal growth factor (EGF)-receptor (i.e. Tyr1173, Tyr1148 and Tyr1068) by phenylalanine, a residue which cannot serve as a phosphate acceptor site. In another mutant, Tyr1173 was substituted by a serine residue. The cDNA constructs encoding either mutant or wild-type EGF-receptors were transfected into NIH-3T3 cells devoid of endogenous EGF-receptors. The mutant receptors were expressed on the cell surface and displayed typical high- and low-affinity binding sites for [125I]EGF. Phorbol ester (PMA) modulated the binding affinity of wild-type and mutant receptors in a similar manner. Mutant EGF-receptors exhibited EGF-dependent tyrosine kinase activity leading to self-phosphorylation and phosphorylation of exogenous substrates both in vitro and in living cells. The internalization and degradation of EGF-receptors were not affected by the mutations. Cells expressing mutant EGF-receptors became mitogenically responsive to EGF, indicating that none of the vital functions of the EGF-receptor were critically impaired by the loss of individual autophosphorylation sites. Maximal mitogenic stimulation correlated with the number of wild-type or mutant receptors per cell, highly expressing cells showing higher maximal stimulation. However, the dose-response curves of cells expressing mutant receptors were slightly shifted to lower concentrations of EGF, rendering the cells mitogenically responsive to lower doses of EGF than cells expressing normal EGF-receptor at similar expression levels. Basal [3H]thymidine incorporation in the presence of 0.5% calf serum was consistently higher for cells expressing mutant receptors, while the response to stimulation with 10% calf serum was not affected.  相似文献   

10.
Protein tyrosine kinase blockers of the tyrphostin family inhibited the EGF-dependent proliferation of human and guinea pig keratinocytes grown in culture and induced their growth arrest. These blockers also significantly inhibited the growth of epidermal keratinocytes, but not of dermal cells, in whole skin organ culture from both guinea pig and human origin. The antiproliferative activity of these tyrphostins correlated quantitatively with their potency as inhibitors of EGF receptor autophosphorylation and the EGF-dependent protein phosphorylation of intracellular target proteins in the keratinocyte. Furthermore, no significant cell cytotoxicity or reduction in serine and threonine phosphorylation of many intracellular polypeptides were observed upon incubation of the cells with tyrphostins like AG213. The complete growth arrest induced by the tyrphostins is fully reversible and upon their removal the keratinocytes resumed their growth with the original growth rate. Because of the nontoxic nature of these compounds and their growth-arresting properties, we suggest their use as agents to treat hyperproliferative conditions of human skin.  相似文献   

11.
Two residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the γ-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [3H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [3H]thymidine into DNA in response to EGF. In the present study, EGF receptors mutated at lysine-721 or aspartate-813 (K721R and D813A, respectively), as well as wild-type EGF receptors, were expressed in the same cellular background, Chinese hamster ovary cells, and side-by-side experiments were performed to investigate possible signaling-related differences. Our results indicate that while there are measurable differences in the abilities of the two mutant receptors to stimulate [3H]thymidine incorporation between 20 and 24 h after addition of EGF, these differences cannot be correlated with significant differences in EGF-stimulated tyrosine phosphorylation of mutant EGF receptor and endogenous ErbB2, the extent of receptor internalization, EGF-stimulated ion uptake, stimulation of SHC activity, or receptor association with Grb2. Flow cytometric data suggest that populations of cells expressing either kinase-impaired mutant EGF receptor progress similarly into S phase in response to addition of EGF. These observations suggest that D813A and K721R retain similar ability to stimulate mitogenic signaling events through transactivation of ErbB2 with only subtle temporal differences, and they emphasize the importance of expressing mutant receptors in an identical cellular context to make valid comparisons of functions.  相似文献   

12.
We have previously demonstrated that concomitant activation of receptor tyrosine kinases and certain G protein-coupled receptors (GPCRs) can promote a synergistic increase in the rate of airway smooth muscle cell (ASM) proliferation. Here we clarify the role of p70S6 kinase (p70S6K) as an integrator of receptor tyrosine kinase and GPCR signaling that augments ASM DNA synthesis by demonstrating that specific p70S6K phosphorylation sites receive distinct regulatory input from GPCRs that promotes sustained kinase activity critical to mitogenesis. Prolonged stimulation of ASM cells with EGF and thrombin induced a greater than additive effect in levels of p70S6K phosphorylated at residue T389, whereas a significant but more modest increase in the level of T229 and T421/S424 phosphorylation was also observed. The augmenting effects of thrombin could be dissociated from p42/p44 MAPK activation, as selective inhibition of thrombin-stimulated p42/p44 failed to alter the profile of cooperative p70S6K T389 phosphorylation, p70S6K kinase activity, or ASM [(3)H]thymidine incorporation. Thrombin stimulated a sustained increase in the level of Akt phosphorylation and also augmented EGF-stimulated Akt phosphorylation. The cooperative effects of thrombin on Akt/p70S6K phosphorylation and [(3)H]thymidine incorporation were all attenuated by heterologous expression of Gbetagamma sequestrants. These data suggest that PI3K-dependent T389/T229 phosphorylation is limiting in late-phase p70S6K activation by EGF and contributes to the cooperative effect of GPCRs on p70S6K activity and cell growth.  相似文献   

13.
Human epidermoid carcinoma A431 cell clones have been obtained whose growth is inhibited, stimulated, or unaffected by epidermal growth factor (EGF). In clones exhibiting each type of growth response, EGF induced similar morphologic changes consisting of aggregation of cells into dense clusters with baring of large areas of the culture dish. The similarity of the clones' morphologic responses, despite their differing growth responses, indicates that the effects of EGF on morphology are distinct from effects on growth. Cells whose growth was inhibited by EGF contained high numbers of EGF receptors, whereas the concentration of EGF receptors was reduced in cells whose growth was stimulated or unaffected by EGF. There were, however, no consistent differences in EGF receptor concentrations between stimulated or null clones. Cells that exhibited each type of growth response displayed similar rates of EGF binding to receptors, rates of internalization of EGF, and rates and extent of EGF-induced receptor down-regulation. Changes in EGF-stimulated tyrosine-specific protein kinase activity paralleled changes in EGF receptors, both between clones and upon down-regulation. These studies indicate that a reduction in the concentration of EGF receptors in A431 cells allows escape from the growth inhibitory effects of EGF, but suggest that the pattern of growth response depends on biochemical events subsequent to EGF-receptor metabolism and activation of tyrosine-specific protein kinase.  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

15.
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.  相似文献   

16.
We studied the effects of a series of drugs on A431, a cell line with well-characterized growth factor requirements and epidermal growth factor (EGF) receptors. The major [32PO4]-labeled protein immunoprecipitated with anti-phosphotyrosine antibodies from EGF-stimulated A431 cells was the EGF receptor. Both the quantity of [32PO4]-labeled EGF receptor immunoprecipitated and the phosphotyrosine content of total [32PO4]-labeled proteins were reduced by the addition during EGF stimulation of trifluoperazine (TFP). TFP had little effect on the binding, internalization, and processing of [125I]-EGF. In addition to the effects on phosphorylation, TFP inhibited cell growth both in the presence and absence of EGF. Morphologically, TFP blocked EGF-induced ruffling. TFP did not alter the EGF-stimulated phosphatidylinositol turnover. In an in vitro experiment using A431 cell membranes, TFP did not inhibit phosphorylation of the EGF receptor.  相似文献   

17.
Epidermal growth factor (EGF) has been shown to influence FSH-stimulated estradiol (E2) and progesterone (P4) production from granulosa cells. RG 50810, a tyrosine kinase inhibitor (TKI), has previously been shown to inhibit the EGF-receptor tyrosine kinase. RG 50810 has also been shown to inhibit FSH-stimulated increases in mRNA for steroidogenic enzymes, implying a functional role of tyrosine kinases in FSH action in granulosa cells. However, inhibition of FSH-stimulated steroidogenesis by TKIs has not been evaluated in connection with the effects of EGF in granulosa cells. In the present studies, FSH-stimulated E2 production was inhibited similarly by inhibitors of protein kinase A (H-89) and protein kinase C (calphostin C) and by TKIs, and none of the inhibitors were capable of reversing the EGF-induced inhibition of FSH-stimulated E2 production. FSH-stimulated P4 production was enhanced dramatically in serum-containing medium with concentrations of TKI that were near previously reported IC50s. The enhancing effect of TKIs was less evident in serum-free medium. Addition of EGF to serum-free medium enhanced FSH-stimulated P4 production, and the TKIs reversed EGF-enhanced P4 production, but in a manner similar to that of protein kinase A inhibitor H-89. Compared to results in serum-free medium, the potency of RG 50810 and genistein to inhibit the effects of EGF on P4 production was 3- to 8-fold greater relative to H-89. These studies have demonstrated that TKIs RG 50810 and genistein selectively inhibit the effects of EGF on FSH-stimulated P4 production in granulosa cell cultures. In contrast, these studies have demonstrated nonselective inhibition of FSH-stimulated E2 and P4 production by TKIs in serum-free medium, in which it is not clear which enzyme system is affected by the compounds tested.  相似文献   

18.
19.
Genistein, a specific inhibitor of tyrosine-specific protein kinases   总被引:138,自引:0,他引:138  
Tyrosine-specific protein kinase activity of the epidermal growth factor (EGF) receptor, pp60v-src and pp110gag-fes was inhibited in vitro by an isoflavone genistein. The inhibition was competitive with respect to ATP and noncompetitive to a phosphate acceptor, histone H2B. By contrast, genistein scarcely inhibited the enzyme activities of serine- and threonine-specific protein kinases such as cAMP-dependent protein kinase, phosphorylase kinase, and the Ca2+/phospholipid-dependent enzyme protein kinase C. When the effect of genistein on the phosphorylation of the EGF receptor was examined in cultured A431 cells, EGF-stimulated serine, threonine, and tyrosine phosphorylation was decreased. Phosphoamino acid analysis of total cell proteins revealed that genistein inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells.  相似文献   

20.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号