首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of maturation of vesicular stomatitis virus (VSV) results in the loss of 70% of the H-2k antigenic activity from L-cell plasma membranes. This phenomenon is also demonstrated during VSV infection of cells of the H-2d haplotype. Using the method of inhibition of immune cytolysis, VSV-infected L5178Y tissue culture cells and VSV-infected METH A fibrosarcoma cells grown in vivo show a loss of H-2d activity of 73 and 76%, respectively. Using monospecific antisera, it is seen that VSV infection results in a significant loss of antigenic activity of the gene products of both the H-2D and H-2K regions in cells of the H-2d and H-2k haplotypes. In hybrid cells expressing H-2k as well as H-2b, VSV infection results in the decrease of both H-2 antigenic activities to the same extent. VSV purified from L cells shows considerable H-2k activity, but the reaction of this virus with anti-H-2k serum does not prevent a normal subsequent infection with this virus. VSV may associate with H-2 antigen in the culture medium, but the results of mixing VSV with uninfected H-2-containing homogenates suggest that this association occurs only when the host cell and the cell homogenate share the same H-2 haplotype. Velocity sedimentation of VSV, which would remove contaminating cellular membrane fragments, does not separate H-2 activity from VSV. H-2 activity is also stably associated with VSV throughout sequential sucrose gradient centrifugation steps. It is possible that H-2 antigen is a structural component of VSV grown in murine cells.  相似文献   

2.
H-2k mice are unable to generate cytotoxic T lymphocytes (CTL) to vesicular stomatitis virus (VSV). This apparent unresponsiveness is found for both major serotypes of VSV, VSV-Indiana and VSV-New Jersey. CTL unresponsiveness occurs despite the ability of H-2k mice to generate a humoral immune response against VSV that is comparable to that found in responder (H-2b and H-2a) strains. All H-2k mice regardless of background genes, including various Ig allotypes, were found to be nonresponders. H-2k-linked unresponsiveness mapped to both H-2Kk and H-2Dk and occurred despite the presence of responder alleles in (responder x nonresponder)F1 mice. The unresponsiveness cannot be attributed to an inability of VSV-infected H-2k target cells to express viral surface antigens of H-2 molecules. Further, unresponsiveness cannot be overcome by using secondary stimulation in vivo or in vitro. H-2k-linked unresponsiveness does not appear to be due to suppression, and no complementation has been found in various (nonresponder x nonresponder)F1 mice. Thus unresponsiveness to VSV in association with H-2Kk or H-2Dk appears to represent an extensive defect of immune responsiveness that probably occurs because VSV is not a natural mouse pathogen.  相似文献   

3.
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection   总被引:15,自引:0,他引:15  
Innate immune responses provide the host with an early protection barrier against infectious agents, including viruses, and help shape the nature and quality of the subsequent adaptive immune responses of the host. Expression of ISG15 (UCRP), a ubiquitin-like protein, and protein ISGylation are highly increased upon viral infection. We have identified UBP43 (USP18) as an ISG15 deconjugating protease. Protein ISGylation is enhanced in cells deficient in UBP43 (ref. 6). Here we have examined the role of UBP43, encoded by the gene Usp18, in innate immunity to virus infection. Usp18(-/-) mice were resistant to the fatal lymphocytic choriomeningitis and myeloencephalitis that developed in wild-type mice after intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV), respectively. Survival of Usp18(-/-) mice after intracerebral LCMV infection correlated with a severe inhibition of LCMV RNA replication and antigen expression in the brain and increased levels of protein ISGylation. Consistent with these findings, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages from Usp18(-/-) mice showed restricted LCMV replication. Moreover, MEF from Usp18(-/-) mice showed enhanced interferon-mediated resistance to the cytopathic effect caused by VSV and Sindbis virus (SNV). This report provides the first direct evidence that the ISG15 protease UBP43 and possibly protein ISGylation have a role in innate immunity against viral infection.  相似文献   

4.
BALB/c-H-2dm2 mice (H-2KdI-AdI-EdDd), a congenic strain of BALB/c mice, have a deletion of the class I MHC Ag, H-2Ld. This gene encodes the exclusive class I MHC-restricting gene product for vesicular stomatitis virus-specific cytolytic T lymphocytes. When dm2 mice were immunized with infectious vesicular stomatitis virus, a specific CTL response was generated. These CTL lysed VSV-infected targets that expressed Iad gene products, but not VSV-infected Iad- targets. The CTL were used initially as long term cytolytic lines; 13 CTL clones were derived by limit dilution. All of the clones expressed the phenotype CD3+, CD4+, CD8-; some clones expressed TCR that are members of the V beta 8 family, others did not. The clones were restricted by class II MHC Ag, both I-Ad and I-Ed serving as restricting elements for individual clones of the panel. All of the clones derived from dm2 mice were specific for the immunizing serotype, Indiana, of VSV and did not lyse syngeneic cells infected with VSV of the New Jersey serotype. Studies using defective interfering virus particles, UV light-inactivated virus, and purified micelles of the viral glycoprotein indicated that infectious virus was not required for sensitization of target cells for immune recognition by the class II MHC-restricted CTL clones. Additional studies using recombinant vaccinia virus vectors to sensitize targets confirmed the specificity of the clones for the viral glycoprotein. These studies also demonstrated a cryptic population of class II-restricted CTL in BALB/c lines specific for VSV G. Naturally occurring variant viruses and mutant viruses, selected for escape from neutralization by mAb, were used in an effort to map the determinant(s) recognized; on the basis of patterns of target cell lysis, three groups of epitopes recognized by the clones were defined. Therefore, in the absence of the class I MHC Ag required for a CTL response to VSV, dm2 mice generated CTL with the CD4+ phenotype that recognized different epitopes on the viral glycoprotein, and lysed cells in a class II-MHC restricted, Ag-specific manner.  相似文献   

5.
In Friend leukemia virus-induced tumor cell lines derived from mice congenic with respect to the H-2 complex, most cell lines expressing the H-2k haplotype continuously produced infectious exogenous virus in culture, whereas most cell lines expressing the H-2b or H-2d haplotype stopped producing virus during in vitro passage. This apparent H-2-linked control of virus production did not appear to be the result of alteration of the provirus or resistance to superinfection. The implications of this finding with respect to virus-induced leukemogenesis are discussed.  相似文献   

6.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

7.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

8.
H-2k mice generate a secondary in vitro cytotoxic T lymphocyte response to Sendai virus 20- to 100-fold weaker than those of other haplotypes tested (H-2b,d,q,s). This immune response defect maps to both H-2K and H-2D. H-2k x H-2d F1 mice (responder x nonresponder) only lyse targets that have the d allele at H-2K and/or H-2D. H-2k targets are equally lysable with anti-Sendai antibody. Furthermore, H-2k mice demonstrate normal antibody and T cell proliferation responses to Sendai virus. The Ir gene defect therefore appears to be limited to the generation of the cytotoxic T lymphocytes.  相似文献   

9.
The herpes simplex virus (HSV) virion host shutoff (vhs) protein, the product of the UL41 (vhs) gene, is an important determinant of HSV virulence. vhs has been implicated in HSV interference with host antiviral immune responses, down-regulating expression of major histocompatibility complex molecules to help HSV evade host adaptive immunity. The severe attenuation of vhs-deficient viruses in vivo could reflect their inability to escape immune detection. To test this hypothesis, BALB/c or congenic SCID mice were infected intravaginally (i.vag.) with the HSV type 2 (HSV-2) vhs null mutant 333d41 or the vhs rescue virus 333d41(R). vhs-deficient virus remained severely attenuated in SCID mice compared with rescue virus, indicating that vhs regulation of adaptive immune responses does not influence HSV pathogenesis during acute infection. Innate antiviral effectors remain intact in SCID mice; prominent among these is alpha/beta interferon (IFN-alpha/beta). The attenuation of HSV-2 vhs mutants could reflect their failure to suppress IFN-alpha/beta-mediated antiviral activity. To test this hypothesis, 129 and congenic IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) mice were infected i.vag. with wild-type virus, vhs null mutants 333-vhsB or 333d41, or the vhs rescue virus 333d41(R). Whereas vhs-deficient viruses showed greatly reduced replication in the genital mucosa of 129 mice compared with wild-type or vhs rescue viruses, they were restored to nearly wild-type levels of replication in IFN-alpha/betaR(-/-) mice over the first 2 days postinfection. Only wild-type and vhs rescue viruses caused severe genital disease and hind limb paralysis in 129 mice, but infection of IFN-alpha/betaR(-/-) mice restored the virulence of vhs-deficient viruses. vhs-deficient viruses replicated as vigorously as wild-type and rescue viruses in the nervous systems of IFN-alpha/betaR(-/-) mice. Restoration was specific for the vhs mutation, because thymidine kinase-deficient HSV-2 did not regain virulence or the capacity to replicate in the nervous systems of IFN-alpha/betaR(-/-) mice. Furthermore, the defect in the IFN-alpha/beta response was required for restoration of vhs-deficient virus replication and virulence, but the IFN-alpha/beta-stimulated protein kinase R pathway was not involved. Finally, vhs of HSV-2 has a unique capacity to interfere with the IFN-alpha/beta response in vivo, because an HSV-1 vhs null mutant did not recover replication and virulence after i.vag. inoculation into IFN-alpha/betaR(-/-) mice. These results indicate that vhs plays an important role early in HSV-2 pathogenesis in vivo by interfering with the IFN-alpha/beta-mediated antiviral response.  相似文献   

10.
By employing improved techniques it has been possible to produce and characterize a representative spectrum of mammalian and primate retrovirus pseudotypes of vesicular stomatitis virus (VSV). Selection of appropriate cell lines for both the production and subsequent detection of the VSV pseudotypes has been the most important factor in permitting their demonstration. The host range for penetration of these retrovirus pseudotypes of VSV has been defined and found to differ from that reported for the replication of the corresponding retroviruses. Additionally, retroviruses having an identical host range for replication were distinguishable by differences in their host range for penetration, implying that restriction of replication may be occurring by different mechanisms. Studies of the plaque-forming efficiency of retrovirus pseudotypes of VSV in cell lines nonpermissive for replication of the corresponding retroviruses permitted a distinction to be made between the restriction of replication occurring as a consequence of postpenetration events and that occurring as a consequence of a block of penetration itself. The demonstration of primate retrovirus pseudotypes of VSV permits the use of VSV as a probe for the detection of this group of viruses.  相似文献   

11.
12.
The kinetic study of immunosuppression caused by infection of mice with lymphocytic choriomeningitis virus WE (LCMV-WE) was assessed in DBA/2 (H-2d) and C57BL/6 (H-2b) mice. Infection with LCMV caused suppression of the Day 4 IgM response (complete in DBA/2 and incomplete in C57BL/6) and completely suppressed IgG responses on Days 9 and 42 to vesicular stomatitis virus (VSV) injected 2-11 days after LCMV. Suppression was partial when VSV was injected 16-28 days after LCMV-WE infection. The observed suppression between Day 2 and Day 11 was complete and nonspecific as revealed by the fact that these mice could not mount a secondary response to VSV when reinjected with the same VSV 42 days later. Nonspecificity of suppression was further indicated by the finding that the kinetics of recovery from suppression of the anti-VSV response were comparable for the VSV serotype used during the 2- to 11-day period after LCMV infection as for the serologically noncross-reactive second VSV serotype; both anti-VSV responses had recovered by Days 56-82 after LCMV infection. Once an anti-VSV antibody response was established, a subsequent LCMV-WE infection had no suppressive effect on Day 2 or Day 42 after a primary VSV infection. Also, the capacity of VSV-primed mice that were LCMV infected to respond to VSV in a secondary challenge infection with the same VSV was not impaired.  相似文献   

13.
In influenza A virus infections, CTL are a significant component of the host immune response which limits viral replication and promotes recovery. To examine the CTL response to the influenza virus A/Ty/Ont/7732/66[H5N9], particularly the H5 hemagglutinin, a long term CTL line was generated from spleen cells of A/Ty/Ont-immune Balb/c [H-2d] mice secondarily stimulated in vitro with A/Ty/Cal/Hurst-2/71[H5N2]. This CTL line was highly specific for influenza viruses of the H5 subtype. From this line, clones were isolated by limiting dilution and shown to be H5 hemagglutinin-specific based on recognition of an H5 vaccinia virus recombinant (H5 Vac). The clones exhibited the classical CTL surface phenotype Lyt-1-2+L3T4-; however, unlike the typically class I-restricted Lyt-2+ CTL, they were restricted in antigen recognition by class II (I-E) MHC molecules based on target cell recognition and antibody blocking of cytotoxicity. The clones recognized both infectious and non-infectious A/Ty/Ont presented by class II+ target cells. In adoptive transfer studies to assess the biologic role of the clones in vivo, these class II-restricted clones did not appear to alter mortality. However, these cells significantly reduced both morbidity and virus titers in the lungs of infected animals at 5 days post-infection. Thus, in the immune response to this virus, class II-restricted Lyt-2+ CTL specific for the H5 hemagglutinin were readily generated and their biologic role in vivo involved viral clearance.  相似文献   

14.
Virus particles (virions) often contain not only virus-encoded but also host-encoded proteins. Some of these host proteins are enclosed within the virion structure, while others, in the case of enveloped viruses, are embedded in the host-derived membrane. While many of these host protein incorporations are likely accidental, some may play a role in virus infectivity, replication and/or immunoreactivity in the next host. Host protein incorporations may be especially important in therapeutic applications where large numbers of virus particles are administered. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and a candidate vaccine, gene therapy and oncolytic vector. Using mass spectrometry, we previously examined cell type dependent host protein content of VSV virions using intact (“whole”) virions purified from three cell lines originating from different species. Here we aimed to determine the localization of host proteins within the VSV virions by analyzing: i) whole VSV virions; and ii) whole VSV virions treated with Proteinase K to remove all proteins outside the viral envelope. A total of 257 proteins were identified, with 181 identified in whole virions and 183 identified in Proteinase K treated virions. Most of these proteins have not been previously shown to be associated with VSV. Functional enrichment analysis indicated the most overrepresented categories were proteins associated with vesicles, vesicle-mediated transport and protein localization. Using western blotting, the presence of several host proteins, including some not previously shown in association with VSV (such as Yes1, Prl1 and Ddx3y), was confirmed and their relative quantities in various virion fractions determined. Our study provides a valuable inventory of virion-associated host proteins for further investigation of their roles in the replication cycle, pathogenesis and immunoreactivity of VSV.  相似文献   

15.
Spleen cells from C57BL/6 (B6) mice generate a strong in vitro cytotoxic T-lymphocyte (CTL) response specific for vesicular stomatitis virus (VSV). Spleen cells from VSV-primed B6-H-2bm3 (bm3) mice, which have a mutation in H-2Kb, require approximately 10-fold more UV-inactivated VSV to generate in vitro secondary anti-VSV CTL, compared with spleen cells from primed B6 mice. Anti-VSV CTL elicited in both bm3 and B6 mice are primarily specific for the viral nucleocapsid protein (N protein), as demonstrated by using recombinant vaccinia viruses that express the VSV N protein. bm3 CTL were found to exhibit only a very low level of lytic activity when tested against autologous VSV-infected concanavalin A spleen cell blasts as well as several H-2b tumor cell lines. The weak anti-VSV response of bm3 CTL was found to be the result of a combination of inefficient recognition of VSV-infected target cells and decreased elicitation of secondary effector cells. VSV-infected bm3 target cells were not killed as well as B6 targets by either bm3 or B6 effectors. This is because of the inefficient recognition of targets, as demonstrated by the fact that VSV-infected bm3 cells were unable to competitively inhibit the lysis of VSV-infected B6 target cells by either bm3 or B6 effectors. By using cells from recombinant mice, it was shown that the CTL response restricted by H-2Kb was low in the bm3 mice, compared with that of the B6 mice. However, the H-2Db-restricted CTL activity was similarly low in both the B6 and bm3 mice. The possibility that the low response to VSV-infected bm3 cells is caused by differences between the bm3 and B6 cells in expression of either viral antigens or H-2K was investigated by radiolabeling and immunoprecipitation. VSV-infected B6 and bm3 cells were found to express equivalent levels of both viral antigens and H-2K. These results indicate that the bm3 mutation alters a functional site on the H-2Kb molecule that is involved in the recognition of VSV-infected cells. The observation that elicitation of bm3 CTL can occur at high antigen doses further suggests that the bm3 mutation results in a lower affinity of H-2K either for viral antigen or for receptor sites on the CTL.  相似文献   

16.
17.
Although two deoxyribonucleic acid (DNA) viruses, pseudorabies (PsRV) and vaccinia, are as susceptible as a ribonucleic acid (RNA) virus, vesicular stomatitis (VSV), to interferon when tested in chicken or mouse cells, they are refractory to inhibition in interferon-treated primary rabbit kidney cells and in a continuous line (RK-13) of rabbit kidney cells. Superinfection with VSV of RK-13 cells first infected with PsRV completely blocks the replication of PsRV with no effect on VSV yield. When the same experiment is carried out in RK-13 cells pretreated with 1,000 units of interferon, VSV replication is inhibited, which permits PsRV to replicate normally. These findings demonstrate that in the same cell one virus (PsRV) can be refractory to interferon and a second virus (VSV) can be susceptible. These experiments show that rabbit kidney cell cultures are deficient in the synthesis of resistance factors active against the DNA viruses tested and raise the possibility that separate resistance factors may exist for RNA and DNA viruses. In the case of sequential infection of interferon-treated RK-13 cells with vaccinia and VSV, it was found that not only was vaccinia replication refractory to inhibition by interferon, but also that prior infection with vaccinia was able to partially reverse the effect of the inhibitor on the replication of the VSV used for superinfection. On the basis of these and other data it is postulated that a vaccinia virion component or a replication product of vaccinia virus, or both, enables VSV to escape the inhibiting action of interferoninduced resistance factors.  相似文献   

18.
Purified defective interfering (DI) particles of vesicular stomatitis virus (VSV) inhibit the replication of a heterologous virus, pseudorabies virus (PSR), in hamster (BHK-21) and rabbit (RC-60) cell lines. In contrast to infectious B particles of VSV, UV irradiation of DI particles does not reduce their ability to inhibit PSR replication. However, UV irradiation progressively reduces the ability of DI particles to cause homologous interference with B particle replication. Pretreatment with interferon does not affect the ability of DI particles to inhibit PSR replication in a rabbit cell line (RC-60) in which RNA, but not DNA, viruses are sensitive to the action of interferon. Under similar conditions of interferon pretreatment, the inhibition of PSR by B particles is blocked. These data suggest that de novo VSV RNA or protein synthesis is not required for the inhibition of PSR replication by DI particles. DI particles that inhibit PSR replication also inhibit host RNA and protein synthesis in BHK-21 and RC-60 cells. Based on the results described and data in the literature, it is proposed that the same component of VSV B and DI particles is responsible for most, if not all, of the inhibitory activities of VSV, except homologous interference.  相似文献   

19.
The T cell-mediated immune responses of mice against vesicular stomatitis virus (VSV) were assessed by measuring direct primary foot pad swelling after local VSV infection and cytotoxic activity in spleens. The cytolytic activity was mediated by T cells since it was anti-theta + complement sensitive, was restricted by the K and D region but not the I region of H-2 and rapidly increased after 4 days but decreased 8 days after systemic or local infection. Cytolytic activity was virus-specific as reciprocally tested with VSV and vaccina virus immune T cells. Measurable activity on day 7 depended on infectious virus dose, virus virulence, and non-H-2 genetic background of the host. More than half of the cytolytic activity wasblocked specifically by either immune anti-H2 or rabbit anti-VSV antisera. Analysis of the kinetics of appearance of antigenic changes using metabolic inhibitors, revealed that the changes that rendered target cells susceptible to lysis after infection, occurred within the first hour after infection.  相似文献   

20.
VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway   总被引:10,自引:0,他引:10  
Interference with nucleocytoplasmic transport is a strategy employed by certain viruses to compromise host cellular function. While it has been shown that the matrix (M) protein of the vesicular stomatitis virus (VSV) inhibits nuclear export of host cell mRNAs, the underlying mechanism has not been fully established. Here we show that VSV M protein binds the mRNA export factor Rae1/mrnp41. A mutant of M protein defective in Rae1 binding is unable to inhibit mRNA nuclear export. We further show that increased expression of Rae1 fully reverts the inhibition of mRNA export induced by M protein or following virus infection. We found that Rae1 is induced by interferon-gamma, a cytokine that plays a critical role in the immune response to viruses, such as VSV. Thus, these results demonstrate that VSV M protein blocks mRNA export by disrupting Rae1 function, which can be reverted by induction of Rae1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号