首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
石油污染土壤堆制微生物降解研究   总被引:11,自引:0,他引:11  
采用异位生物修复技术堆式堆制处理方法 ,对辽河油田原油污染土壤进行了生物修复处理研究 .处理工程设 4个处理料堆单元 ,每个处理单元长 118.5cm ,宽 6 5 .5cm ,高 12 .5cm .研究结果表明 ,当进行处理的石油污染土壤中石油烃总量为 5 .2 2 g·10 0 g-1土时 ,利用黄孢原毛平革菌 (Phanerochaetechrysospori um) ,经过 5 5d的运行 ,石油烃总量去除率达 5 4.2 % .堆制处理中影响污染土壤石油烃总量生物降解的主要变化因子为污染土壤的O2 和CO2 含量、降解石油烃微生物的数量、污染土壤pH的变化 .通过监测这些数据的变化 ,可直接反映该工程的处理石油污染土壤的效果 .本处理工程采用定期通风措施 ,操作简单、运行费用低廉 ,为石油污染土壤生物修复实用化提供了一种简单易行的污染土壤清洁技术 .  相似文献   

2.
石油污染土壤的生物刺激和生物强化修复   总被引:6,自引:0,他引:6  
随着工业化的发展,土壤的石油污染问题日益严重,石油污染物的处理已成为各国亟待解决的环境问题。由于生物修复具有高效、安全、成本低、无二次污染等诸多优点而成为近些年来主要的石油污染处理方法。概述了生物刺激和生物强化处理方法的基本原理,以及近年来国内外相关的研究进展。生物刺激和生物强化是生物修复法中最常用的两类方法,而且生物强化通常比生物刺激的效率高,但两者处理效率的高低均与多方面的因素有关,因此在实际应用中应注意考虑多方面的效益,制定出较合理的处理方案。  相似文献   

3.
石油污染土壤的生物降解研究   总被引:18,自引:0,他引:18  
石油工业迅速的发展带来了许多环境问题。在原油生产与输送过程中[1] ,井喷、泄露及沉降排放等引起的原油进入土壤造成的土壤污染 ,很难治理。原油在环境中残留时间长 ,对土壤微生物和土壤 植物生态系统 ,甚至地下水都产生危害 ,影响土壤肥力 ,破坏土壤生产力 ,严重影响当地的粮食产量及产品质量。当前 ,治理土壤石油污染的方法主要有物理法、化学法和生物治理技术[2 ] 。污染土壤生物清洁技术就是利用微生物将土壤中有害有机污染物降解为无害无机物 (CO2 和H2 O)的过程。降解过程可以由改变土壤理化条件 (包括土壤pH ,温度、湿度、…  相似文献   

4.
微生物修复被认为是去除石油污染物和修复石油污染土壤的一种经济、高效且无二次污染的绿色清洁技术。受土壤环境条件和石油污染物性质等因素制约,土壤中土著石油降解微生物常存在数量不足、活性偏低、生长缓慢等问题,导致修复效果不佳、修复周期偏长。微生物强化修复技术可有效提高微生物降解效能,通过投加具有降解效能的功能菌株或菌剂、营养物质、表面活性剂、生长基质及固定化微生物等手段,可改善提升土著微生物对石油污染土壤的修复效果。文中梳理了已报道的石油降解微生物的种类,总结了微生物修复石油污染土壤的主要影响因素,阐述了微生物强化修复石油土壤的多种有效策略,提出了微生物强化修复石油污染的未来发展方向。  相似文献   

5.
石油烃污染土壤的生物修复   总被引:2,自引:0,他引:2  
从中原油田污染土壤中通过实验室驯化培养分离到一组能以中原原油为碳源的快速生长的石油烃降解菌.用该组降解菌接种原油污染土壤,研究其原位生物联合修复实验,接种降解菌的各区分别种植大豆、施有机肥料、施有机肥料和锯末,与空白试样作对比.经过120d的联合修复,各区石油降解菌的总数(lgcfu/g)由接种时的5.25分别变为7.79、4.96、5.15、4.67.石油烃降解率分别达到89.4%、72.5%、76.7%、49.2%.表明分离的该组石油烃降解菌是一组高效降解菌且其与植物联合修复石油污染土壤能显著提高修复效果.  相似文献   

6.
石油污染土壤的生物修复技术   总被引:1,自引:0,他引:1  
简要综述了土壤生物修复技术及其在石油污染土壤修复中的应用现状,着重讨论了生物强化修复技术及其应用过程中所涉及的关键技术问题;介绍了真菌-细菌协同修复石油污染耕地以及该技术与秸秆填埋发酵相集成修复油-盐混合污染耕地的研究成果。  相似文献   

7.
生物反应器法处理PAHs污染土壤的研究   总被引:13,自引:2,他引:13  
利用自行设计的生物泥浆反应器研究了多环芳烃 (PAHs)污染土壤生物修复技术 .结果表明 ,在相同环境条件下 ,污染物自身的理化性质是影响生物修复的关键因素 ,苯环越多、分子量越大 ,越难以被微生物利用 ,故菲 (PHE)比芘 (PY)具有更高的污染可修复性 .温度、空气流量是重要的调控因子 .本实验中 ,生物泥浆反应器处理PAHs污染土壤选择的最佳运行工艺参数是 :温度 2 0~ 30℃ ,水土比 2∶1,空气流量8L·h-1·L-1,接种量 5 0g·kg-1.该工艺参数为生物泥浆反应器技术实用化及其他相关研究工作的深入开展提供了理论依据  相似文献   

8.
两株绿脓杆菌对石油污染土壤的修复作用   总被引:2,自引:0,他引:2  
本文旨在研究环境条件下微生物对石油污染土壤的修复情况。从矿井周边土样定向筛选出两株绿脓杆菌,摇瓶降解实验发现,两菌混合培养10 d原油降解率达到95.67%,比单菌培养提高至少32%,即两菌对原油降解具有协同作用。根据降解实验结果制备了混合修复菌剂,并且人工构建石油污染场地,展开中试场地修复试验,模拟不同的操作条件下土壤中原油的降解情况。经60 d修复发现,添加了菌剂的场地,石油烃含量下降趋势明显,每克土壤中石油烃含量从初始的0.8%降至0.1%–0.3%,其中额外添加有机肥作为补充碳氮源的场地,总石油烃降解率最高,达到85.28%。而未添加菌剂的对照组石油烃含量仅减少25.85%。  相似文献   

9.
石油降解菌剂的研制及其在石油污染土壤修复中的应用   总被引:7,自引:0,他引:7  
用液态和固态相结合的方式对包含2种细菌的石油降解菌剂进行培养,牛肉膏、蛋白胨作为液态培养基培齐初级种子,然后接种到草炭和麸皮的固态培养基中培养:分析温度、接种量、料水比、草炭与麸皮的比例、培养时间对固态培养的影响.制备的BC—E和BC-12种菌剂的活菌量分别达到2.47×10^11个/g和3.6×10^10个/g。采用研制的菌剂对石油污染土壤进行修复实验,1个月污染土壤中的石油降解率可达到45%。  相似文献   

10.
海洋石油污染物的微生物降解与生物修复   总被引:28,自引:0,他引:28  
石油是海洋环境的主要污染物 ,已经对海洋及近岸环境造成了严重的危害。微生物降解是海洋石油污染去除的主要途径。海洋石油污染物的微生物降解受石油组分与理化性质、环境条件以及微生物群落组成等多方面因素的制约 ,N和P营养的缺乏是海洋石油污染物生物降解的主要限制因子。在生物降解研究基础上发展起来的生物修复技术在海洋石油污染治理中发展潜力巨大 ,并且取得了一系列成果。介绍了海洋中石油污染物的来源、转化过程、降解机理、影响生物降解因素及生物修复技术等方面内容 ,强调了生物修复技术在治理海洋石油污染环境中的优势和重要性 ,指出目前生物修复技术存在的问题。  相似文献   

11.
石油污染土壤生物降解生态条件研究   总被引:26,自引:0,他引:26  
生物治理是石油污染土壤主要的有效的治理方法。微生物、污染物及环境等方面的因素都影响着生物降解效率。通过最佳生物降解条件的研究,提出了提高生物降解效率的措施。  相似文献   

12.
生物反应器法处理油泥污染土壤的研究   总被引:11,自引:0,他引:11  
采油过程产生的油泥是整个石油烃污染源的重点。在陆地生态环境中 ,烃类的大量存在往往对植物的生物学质量产生不利影响 ,更重要的是石油中的一些多环芳烃是致癌和致突变物质 ,这些致癌和致突变的有机污染物进入农田生态系统后 ,在动植物体内逐渐富集 ,进而威胁人类的生存和健康[1 ,1 1 ] 。大量的废弃油泥 ,不仅污染农田 ,同时也给石油行业带来巨大的经济损失。污染土壤的治理主要有物理、化学和生物 (生物修复 )方法 ,生物修复方法被认为最有生命力。污染土壤生物修复技术主要有 3种 ,即原位处理、挖掘堆置处理和反应器处理。反应器处理是…  相似文献   

13.
中国水青冈分布,生长和更新特点   总被引:11,自引:0,他引:11  
吴刚 《生态学杂志》1997,16(4):47-51
中国水青冈分布、生长和更新特点吴刚(中国科学院生态环境研究中心,北京100085)Distribution,GrowthandRevegetationalCharacteristicsofFagusinChina.WuGang(ResearchCen...  相似文献   

14.
Enhanced Biodegradation of Petroleum Hydrocarbons in Contaminated Soil   总被引:5,自引:0,他引:5  
Soil samples taken from a contaminated site in Northern Quebec, Canada, exhibited a low capacity for biodegradation of total petroleum hydrocarbons (TPH), despite a high capacity for the mineralization of aromatic hydrocarbons and a low toxicity of soil leachates as measured by Microtox assay. Toxicity assays directly performed on surface soil, including earthworm mortality and barley seedling emergence, indicated moderate to high levels of toxicity. Soil biostimulation did not improve the removal of petroleum hydrocarbons, while bioaugmentation of soil with a developed enrichment culture increased the efficiency of hydrocarbon removal from 20.4% to 49.2%. A considerable increase in the removal of TPH was obtained in a bioslurry process, enhancing the mass transfer of hydrocarbons from soil to the aqueous phase and increasing the efficiency of hydrocarbon removal to over 70% after 45 days of incubation. The addition of ionic or nonionic surfactants did not have a significant impact on biodegradation of hydrocarbons. The extent of hydrocarbon mineralization during the bioslurry process after 45 days of incubation ranged from 41.3% to 58.9%, indicating that 62.7% to 83.1% of the eliminated TPH were transformed into CO2 and water.  相似文献   

15.
Soil samples taken from a contaminated site in Northern Quebec, Canada, exhibited a low capacity for biodegradation of total petroleum hydrocarbons (TPH), despite a high capacity for the mineralization of aromatic hydrocarbons and a low toxicity of soil leachates as measured by Microtox assay. Toxicity assays directly performed on surface soil, including earthworm mortality and barley seedling emergence, indicated moderate to high levels of toxicity. Soil biostimulation did not improve the removal of petroleum hydrocarbons, while bioaugmentation of soil with a developed enrichment culture increased the efficiency of hydrocarbon removal from 20.4% to 49.2%. A considerable increase in the removal of TPH was obtained in a bioslurry process, enhancing the mass transfer of hydrocarbons from soil to the aqueous phase and increasing the efficiency of hydrocarbon removal to over 70% after 45 days of incubation. The addition of ionic or nonionic surfactants did not have a significant impact on biodegradation of hydrocarbons. The extent of hydrocarbon mineralization during the bioslurry process after 45 days of incubation ranged from 41.3% to 58.9%, indicating that 62.7% to 83.1% of the eliminated TPH were transformed into CO2 and water.  相似文献   

16.
有机污染土壤生物修复的生物反应器技术研究进展   总被引:3,自引:2,他引:3  
人类广泛的工农业生产活动常常导致土壤污染。常见的土壤污染有重金属污染和有机污染。近年来 ,世界各国开始重视污染土壤的治理。处理方式主要包括热处理 (焚烧法 )、物理及物理化学处理(洗涤 )和生物处理 (生物修复技术 )。其中生物修复技术被认为最有生命力[1,7] 。目前 ,国外采用的土壤生物修复技术有原位处理、场上处理和生物反应器。生物反应器技术能够有效地发挥生物法的特长 ,是污染土壤生物修复技术中最有效的处理工艺 ,但该技术尚处于实验室研究阶段 ,未广泛应用于现场处理。本文就国外使用生物反应器治理有机污染土壤的研究进展…  相似文献   

17.
Bioremediation is a widely accepted technology for the remediation of hydrocarbon-contaminated soil. Treatability studies are usually carried out to assess the biodegradation potential of the contaminants and to design optimal treatments. Laboratory studies measuring soil respiration are often used. One method consists of monitoring the mineralization of a 14C-labeled hydrocarbon surrogate added to the contaminated soil. This study investigates the ability of this method to properly predict the removal of the hydrocarbon contaminants initially found in soils. Mineralization of 14C-labeled hexadecane was monitored in seven soils contaminated with various hydrocarbon mixtures, both fresh and weathered, in microcosm experiments. Reduction of total petroleum hydrocarbon (TPH) concentrations was measured simultaneously in separate microcosms. Both types of microcosms were subjected to the same amendment regimes. For all soils, poor correlation was observed between the mineralization and TPH reduction data sets. Mineralization data supported contaminants removal data in only one soil. Findings indicate that the radioactive surrogate method does not reliably predict the extent of, and the effect of amendments on, the removal of the hydrocarbons initially present in soil, and may therefore predict suboptimal treatment regimes. Recommendations for soil treatability protocols are provided.  相似文献   

18.
Importance of environmental black carbon (BC) to sorption of dissolved petroleum hydrocarbons (DPH) on two soils with high BC:TOC ratios (33% and 11%, respectively) was evaluated at a relatively high concentrations (mg/L ~ μ g/L range). Sorption isotherms of DPH were determined for the two original soils and soils combusted at 375°C (only BC). The sorption isotherms of the original soils were linear, whereas the isotherms of the combusted soils were highly nonlinear (n F = 0.45, 0.60). It is indicated that intrinsic BC-water sorption coefficient is not possible to be used to estimate total sorption to the original soil, even in our relatively high concentrations. From the sorption isotherms, Freundlich coefficient of environmental BC sorption, K F,BC env of 10 2.55 ± 0.21 was calculated and could be used as a generic starting point for environmental modeling purposes. From the data, it could be deduced that BC was responsible for 50% of the total sorption at concentrations of 45 and 4 μ g/L (μ g/L range), which were significantly higher than literature concentrations (ng/L range). These results demonstrate that in soil with high BC:TOC ratio BC is the most important geosorbent constituent with respect to sorption of DPH at relatively high concentrations ranged in μ g/L.  相似文献   

19.
The efficiency of corn steep liquor (CSL) as a potential stimulant for remediation of hydrocarbon-contaminated soil was evaluated in soil microcosms. Chronically polluted soil samples treated with CSL, water, and un untreated control were compared over a period of 42 days. There were remarkable changes in the physicochemical status of the soil in the CSL-treated set-up with noticeable utilization of essential nutrients such as nitrogen, phosphorus, and potassium. Percentage hydrocarbon utilizers showed a concomitant increase with hydrocarbon utilization in CSL-treated (0.05–0.16%) and water-treated (0.02–0.12%) set-ups, while no significant changes occurred in the untreated control. Gas chromatographic fingerprints showed complete disappearance of the lower-fraction alkanes C7, C8, C9, and C11 within 21 days, as well as some higher fractions, significantly C16 and C29, in the CSL-treated set-up. In the CSL-treated set-up, 77.9% of hydrocarbon was degraded, while the corresponding values for the water-treated and untreated control were 40.55 and 30.6%, respectively. The percentage aliphatic components degraded differed significantly in the CSL-treated, water-treated, and untreated set-ups. The n-C17/pristane and n-C18/phytane ratios in the CSL-treated set-up were 1.298 and 1.153, respectively, on day 0, but at the end of the treatability period, the values had dropped drastically to 0.182 and 0.585, respectively. The results of this study show that corn steep liquor is a potential material for bioremediation of hydrocarbon-polluted sites.  相似文献   

20.
In less developed countries, the prevalence of soil contaminated with used lubricating oil is high and the situation worsens with the economic advancement. The contamination has been shown to adversely affect the environment and human health. To mitigate, bioremediation could be adopted to tackle the problem of hydrocarbon-contaminated soil. Thus, this experimental research carried out the bioremediation using chicken manure in soils contaminated with 5%, 10% and 20% w/w used lubricating oil for a 42-day composting period. To compare, this research also experimented with the 5%, 10% and 20% oil-contaminated soils untreated with chicken manure. The results showed that the highest total petroleum hydrocarbons (TPHs) reduction efficiency of >60% was achieved in the 5% oil-contaminated compost remediated with chicken manure. The highest biodegradation rate of lubricating oil of 0.023–0.0025 day?1 as measured by the first-order kinetics could also be achieved under the 5% oil contamination condition with the application of chicken manure. The findings highlight the prospect of chicken manure as a proper nutrient for enhanced remediation of hydrocarbon-contaminated soils, particularly of low contamination concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号