首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tobacco chloroplast ribosomal protein L12 was isolated as a ssDNA-cellulose-binding protein from a chloroplast soluble protein fraction. Based on the N-terminal amino acid sequence of chloroplast L12, a cDNA clone was isolated and characterized. The precursor protein deduced from the DNA sequence consists of a transit peptide of 53 amino acid residues and a mature L12 protein of 133 amino acid residues. The chloroplast L12 protein was synthesized with a reticulocyte lysate and subjected to nucleic acid-binding assays. L12 synthesized in vitro does not bind to ssDNA, dsDNA nor ribonucleotide homopolymers, but it binds to cellulose matrix.  相似文献   

2.
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.  相似文献   

3.
Folding of unfolded protein on Escherichia coli 70S ribosome is accompanied by rapid dissociation of the ribosome into 50S and 30S subunits. The dissociation rate of 70S ribosome with unfolded protein is much faster than that caused by combined effect of translation and polypeptide release factors known to be involved in the dissociation of ribosome into subunits. The protein then reaches a “folding competent” state on 50S and is released to take up native conformation by itself. Release before attaining the folding competent state or prevention of release by cross-linking it with ribosome, would not allow the protein to get back to its native conformation.  相似文献   

4.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

5.
A pulse treatment of Norway spruce (Picea abies (L.) Karst) embryos with the cytokinin N6-benzyladenine induces the formation of adventitious buds from subepidermal cells in the hypocotyl and cotyledons. In addition the treatment also inhibits elongation growth, a key process during germination. In this report we demonstrate that these effects on development of the plant are associated with a suppression of the accumulation of several major chloroplast proteins during germination. These proteins include the large subunit of ribulose bisphosphate/carboxylase oxygenase, two subunits of the chloroplast ATPase, protochlorophyllide reductase and a 23000-Mr component of photosystem II. For two nuclear-encoded proteins, the small subunit of ribulose bisphosphate carboxylase/oxygenase and the light-harvesting chlorophyll a/b-binding protein, a corresponding suppression of the increase in the steady-state amounts of mRNA is recorded. The suppression of chloroplast protein synthesis is consistant with the previously documented delay in greening that results from cytokinin treatment, but the effect is opposite to that found in other plants, where cytokinins promote the synthesis of chloroplast proteins, and stimulate chloroplast biogenesis. We believe that this difference is explained by the cytokinin primarily suppressing organ development, and a strict dependance of chloroplast biogenesis on the developmental state of the organs.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - CF1 coupling-factor 1 of chloroplast ATPase - LHCP light-harvesting chlorophyll a/b-binding protein - LSU large subunit of Rubisco - NADPH-protochlorophyllide oxidoreductase Pchlide reductase - SDS sodium dodecyl sulfate - SSU small subunit of Rubisco We thank K. Hutchison (Dept. of Biochemistry, University of Maine, Orono, Maine, USA) and P. Gustafsson (Dept. of Plant Physiology, University of Umeå, Sweden) for providing the Larix and Pinus clones, and M. Ryberg (Dept. of Plant Physiology, University of Göteborg, Sweden), R. Ölmüller (Botanisches Institut, Universität München, FRG) and W. Lockau (Institut für Botanik, Universität Regensburg, FRG), for the gift of antisera towards Pchlide reductase, RuBPCase and LHCP, and ATPase, respectively. Supported by the Swedish Council for Forestry and Agricultural Research and the Swedish Natural Sciences Research Council.  相似文献   

6.
7.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

8.
Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid translational regulatory module" on the 30 S ribosomal subunit structure for the possible mediation of nuclear factors on plastid translation.  相似文献   

9.
Summary Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface, between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.  相似文献   

10.
11.
Maize (Zea mays L.) seedlings were grown in the presence or absence of an herbicide, norflurazon (4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-pyridazinone), which prevents the accumulation of colored carotenoids. In the absence of carotenoids, plants grown in high light incur extensive photooxidative damage to their plastids, but relatively little damage elsewhere. Growth in very low light minimizes chlorophyll photooxidation and allows chloroplast development to proceed. We have previously reported that mRNA encoding light-harvesting chlorophyll a/b protein (LHCP) fails to accumulate in high-light-grown carotenoid-deficient seedlings, but accumulates normally in carotenoid-deficient seedlings grown in low light. Here we extend these results by examining the levels of translatable mRNAs encoding seven additional nuclear-encoded chloroplast proteins. When norflurazon-treated seedlings were grown in low light for 8 d and then transferred to high light for 24 h, three cytosolic mRNAs (plastocyanin, Rieske Fe–S protein, and the 33-kdalton (kDa) subunit of the photosystem II O2-evolving complex) decreased to less than 1% the amount found in untreated seedlings. Two other mRNAs (NADP malic enzyme, EC 1.1.1.40, and the 23-kDa subunit of the photosystem II O2-evolving complex) decreased significantly but not to levels as low as the first three. Levels of translatable mRNA for two other chloroplast proteins (pyruvate orthophosphate dikinase, EC 2.7.9.1, and ferredoxin NADP oxidoreductase, EC 1.18.1.2) were not reduced in nonflurazon-treated seedlings after 24 h in high light, but did not show the normal light-induced increase found in untreated plants. Photooxidative damage in the chloroplast thus affects the accumulation of a number of cytosolic mRNAs encoding proteins destined for the chloroplast.Abbreviations Da dalton - FNR ferredoxin NADP oxidoreductase - LHCP light-harvesting chlorophyll a/b-binding protein - poly(A)RNA polyadenylated RNA - PPDK pyruvate orthophosphate dikinase - PSII photosystem II - SDSPAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SSu small subunit (of ribulose-1,5-bisphosphate carboxylase)  相似文献   

12.
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51–59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Len (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Len ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S 12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.  相似文献   

13.
14.
Several individual intact ribosomal proteins purified from bacterial sources under mild conditions have been crystallized. A number of these are suitable candidates for three-dimensional structural studies by x-ray diffraction techniques. Data collection to 3 A resolution for one of these proteins is in progress.  相似文献   

15.
16.
Summary Ribosomal proteins from chloroplasts of Nicotiana tabacum L. (cv. Petit Havana) and of SRl, a mutant derived from it, with uniparentally inherited streptomycin resistance, were characterised by two-dimensional gel electrophoresis. From the 67 proteins identified, one has an altered electrophoretic mobility when isolated from the mutant. Streptomycin resistance of the SRl mutant therefore seems to be the consequence of a mutation in the chloroplast DNA coding for a chloroplast ribosomal protein.  相似文献   

17.
Summary EcoR1 restriction endonuclease analysis of chloroplast DNA isolated from several distinct populations of Nicotiana debneyi has revealed a naturally occurring polymorphism. The chloroplast DNA of seven of the nine populations analysed possessed an additional EcoRl site. The origin of the additional restriction endonuclease fragments was confirmed by hybridisation of [32 P]-cRNA to fractionated EcoRl restricted chloroplast-DNA fragments adsorbed to nitrocellulose filters. Reciprocal f1 hybrids between plants carrying the variant chloroplast-DNA's confirmed maternal inheritance of chloroplast-DNA.Communicated by G. Melchers and D. von Wettstein  相似文献   

18.
Summary A pea leaf cDNA library was constructed in the expression vector gt11 and screened with antisera raised against proteins extracted from 30S and 50S ribosomal subunits and 70S ribosomes prepared from isolated pea chloroplasts. Six recombinant phage were identified that encoded fusion proteins containing plastid ribosomal protein antigenic determinants. Phage-induced cell lysate proteins, containing the fusion proteins, were bound to nitrocellulose membranes and used as affinity matrices to prepare monospecific antibodies. These antibodies were then used to identify by Western blotting which plastid ribosomal protein shared antigenic determinants with the fusion proteins. cDNA inserts from the antigen-producing phage were used to hybrid-select complementary mRNAs. The cell-free translation products of these mRNAs were added to a pea chloroplast in vitro transport system and imported proteins analyzed by two-dimensional gel electrophoresis. The imported proteins comigrated with the plastid ribosomal proteins that were identified as being antigenically related to the fusion proteins produced by the corresponding recombinant phage. The imported proteins were 3,500–5,500 daltons smaller than their precursors.  相似文献   

19.
Summary A major obstacle to out understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.  相似文献   

20.
Summary The progeny of a fusion experiment involving N. sylvestris protoplasts and X-irradiated protoplasts of the cytoplasmic male sterile Line 92 (N. tabacum nucleus and alien, male-sterility inducing, cytoplasm) were analyzed. Three groups of somatic hybrid plants resulted: Type A, Type B-1 and Type B-2. These as well as their androgenic progenies and the progenies resulting from their pollination with N. tabacum or N. sylvestris were followed with respect to several nuclear and cytoplasmic traits. Those controlled by the nuclear genome were plant and flower morphologies; those controlled by genetic information in the cytoplasm were tentoxin sensitivity (affecting the coupling factor of chloroplast ATPase), the large subunit of ribulose bisphosphate carboxylase and the restriction endonuclease pattern of plastid DNA. A further cytoplasmic trait investigated (exact site of genetic control not known) was male sterility. The examinations of the somatic-hybrid groups and their respective progenies indicated that: Type A plants have N. sylvestris nuclei and Line 92 plastids; Type B-1 plants also have Line 92 plastids but their genome is composed of N. sylvestris and N. tabacum nuclei; Type B-2 plants with impaired male fertility had N. sylvestris plastids and N. sylvestris nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号