共查询到14条相似文献,搜索用时 0 毫秒
1.
拥有Ⅰ型聚羟基脂肪酸酯(PHA)合酶基因的嗜水气单胞菌CGMCC 0911株可利用月桂酸而不能利用葡萄糖作为碳源积累PHBHHx。将氯霉素抗性基因(Cm)插入到该基因中,获得带有I型PHA合酶断裂基因(phaC::Cm)的自杀质粒pFH10。自杀质粒pFH10通过接合作用转入嗜水气单胞菌CGMCC 0911株中并发生体内同源重组,Cm被整合到基因组上,获得Ⅰ型PHA合酶缺失突变株。DNA序列测定证明了这一结果。GC分析表明,突变株不再产生PHBHHx,但却可利用月桂酸或葡萄糖积累中长链PHA,明显表明野生型嗜水气单胞菌基因组中存在另一个编码Ⅱ型PHA合酶的基因,且只有Ⅰ型PHA合酶被钝化后,这个功能被隐藏的Ⅱ型PHA合酶才可在细胞中发挥作用。 相似文献
2.
拥有Ⅰ型聚羟基脂肪酸酯(PHA)合酶基因的嗜水气单胞菌CGMCC0911株可利用月桂酸而不能利用葡萄糖作为碳源积累PHBHHx。将氯霉素抗性基因(Cm)插入到该基因中,获得带有I型PHA合酶断裂基因(phaC::Cm)的自杀质粒pFH10。自杀质粒pFH10通过接合作用转入嗜水气单胞菌CGMCC0911株中并发生体内同源重组,Cm被整合到基因组上,获得Ⅰ型PHA合酶缺失突变株。DNA序列测定证明了这一结果。GC分析表明,突变株不再产生PHBHHx,但却可利用月桂酸或葡萄糖积累中长链PHA,明显表明野生型嗜水气单胞菌基因组中存在另一个编码Ⅱ型PHA合酶的基因,且只有Ⅰ型PHA合酶被钝化后,这个功能被隐藏的Ⅱ型PHA合酶才可在细胞中发挥作用。 相似文献
3.
嗜水气单胞菌合成含3-羟基戊酸单体的聚羟基脂肪酸共聚酯的研究 总被引:3,自引:0,他引:3
分别利用葡萄糖或葡萄糖酸钠与十一碳酸、月桂酸与十一碳酸为混合碳源进行嗜水气单孢菌 (Aeromonashydrophila)菌株 4AK4的摇瓶培养 ,实现了含有 3 羟基戊酸 (3HV)单体的聚羟基脂肪酸酯的微生物合成。当使用葡萄糖或葡萄糖酸钠与十一碳酸为混合碳源时 ,野生型A .hydrophila 4AK4及含有 3 羟基丁酸辅酶A合成基因phaA和phaB的重组A .hydrophila 4AK4 (pTG01)能够合成-3-羟基丁酸(3HB)与-3HV的共聚物 ,且葡萄糖或葡萄糖酸钠与十一碳酸比例为 1∶1时最利于细胞生长和PHA的积累。当使用月桂酸和十一碳酸为混合碳源时 ,A .hydrophila4AK4能够合成-3HB、3HV与 β-羟基己酸 (3HHx)的共聚物 ,且随着混合碳源中十一碳酸的含量增加 ,A .hydrophila4AK4合成的PHA中-3HV的比例增加 ,而-3HB和-3HHx的比例降低. 相似文献
4.
5.
7.
嗜水气单胞菌WQ中PHBHHx的合成及其分子基础研究 总被引:3,自引:0,他引:3
聚羟基脂肪酸酯(Polyhydroxyalkanoate,PHA)是一系列生物合成的高分子材料,其单体可由多种3-羟基脂肪酸(3-hydroxyalkanoate,3HA)构成^[1]。PHA物理和机械性能的变化很大,从高脆性到弹性体,这跟它们的单体成分有很大关系^[2]。短链和中长链单体共聚的PHA比短链单体或中长链单体聚合得到的PHA有着更好的性能^[3]。在1994年,豚鼠气单胞菌(Aeromonas caviae)FA440被发现能以偶数碳原子数脂肪酸或植物油作为碳源在体内积累PHBHHx^[4]其PHA生物合成基因被成功克隆^[5]。根据亚基数目和底物特异性,PHA合成的关键酶,即PHA合酶或PhaC,被分成了3种类型。A.caviae的PHA合酶属于第1类PHA合酶^[6]。PHA合酶的一些类型含有一些保守的基因序列,该特征可被用于克隆,特别是第Ⅱ类PHA合酶^[2,8]。嗜水气单胞菌(Aeromonas hydrophila)WQ和A.hydrophila 4AK4是能够合成PHBHHx的另外两种菌株,其中A.hydrophila 4AK4已被用作大规模生产PHBHHx。就目前来说,不管生长条件怎么改变,其合成的PHBHHx中3羟基己酸单体(3-hydroxyhexanoate,3HHx)的含量始终在12%~17%之间变化^[9]。而A.hydrophila WQ合成的PHBHHx中则含有6%~14% 3HHx。本论文研究了A.hydrophila WQ的PHA生物合成及其分子基础。 相似文献
8.
石油基合成塑料因成本低、易便携、化学稳定性好等优点,使用量逐年增加,但其在自然条件下难以被生物降解,在环境中不断累积,造成了严重的“白色污染”问题。聚羟基脂肪酸酯(PHA)是微生物合成的可降解材料,因为其种类及性能多样,所以应用前景广阔,被视作石油基塑料的优质替代品,然而生产成本是导致其应用受限最重要的问题,特别是底物成本占主要部分。利用废弃塑料重新生物合成可降解塑料PHA,既有助于解决塑料污染,又能够降低PHA生产成本,是推动建立塑料循环经济的有效举措。本文综述了目前废弃塑料降解处理的方法以及不同微生物利用塑料降解物为碳源合成PHA的研究进展。在此基础上,针对己二酸、乙二醇、1,4-丁二醇、对苯二甲酸、苯酚、苯乙烯以及脂肪烃等主要的塑料降解产物进行中心代谢分析,并通过对转化率、吉布斯自由能变化和反应步骤等分析,了解塑料单体与PHA种类的适配性,以期为不同塑料单体用于PHA合成提供理论基础和指导。 相似文献
9.
10.
为了提高PHAMCL在门多萨假单胞菌NK-01中的积累,采用单因素实验和正交实验确立了发酵生产PHAMCL的最佳条件,即以PHA产量为指标的最佳发酵条件为15 g/L葡萄糖浓度、C/N=50、发酵时间48 h,该条件下获得产量0.8 g/L以上的PHA;以PHA占菌体干重百分含量为指标的最佳发酵条件为10 g/L葡萄糖浓度、C/N=60、发酵时间48 h,该条件下获得占菌体干重50%以上的PHA。该研究将为门多萨假单胞菌NK-01用于PHAMCL的规模化生产提供理论依据。 相似文献
11.
金黄色葡萄球菌一氧化氮合酶基因(nos)缺失突变株的构建 总被引:1,自引:0,他引:1
目的:构建金黄色葡萄球菌一氧化氮合酶基因(nos)缺失突变株。方法从金黄色葡萄球菌RN6390的基因组DNA中扩增了nos基因的上、下游片段;以大肠杆菌和金黄色葡萄球菌穿梭质粒pMAD(含有温度敏感性的复制起点,红霉素抗性基因(erm)和B.半乳糖苷酶基因(bgaB)为筛选标记)为骨架,构建基于nos基因位点的同源重组载体pMADAnos,该载体经金黄色葡萄球菌RN4220修饰后再转入金黄色葡萄球菌RN6390。经过在30℃和42℃交替培养,通过抗生素抗性和β-半乳糖苷酶活性筛选nos基因缺失突变株。结果筛选得到的突变菌株,经基因组PCR、定量PCR及序列分析表明,金黄色葡萄球菌RN6390基因组中的nos基因被成功地敲除。结论利用同源重组的方法构建了金黄色葡萄球菌RN6390nos缺失突变株,为金黄色葡萄球菌nos基因功能的研究奠定了基础, 相似文献
12.
聚羟基脂肪酸酯解聚酶(polyhydroxyalkanoate depolymerase,PHAD)可用于聚羟基脂肪酸酯(polyhydroxyalkanoate,PHA)的降解回收,为开发热稳定性好的PHAD,本研究在大肠杆菌(Escherichiacoli)BL21(DE3)中成功表达了来自短须嗜热单孢菌(Thermomonospora umbrina)的PHA解聚酶(TumPHAD),并通过二硫键理性设计获得了热稳定性提升的突变体A190C/V240C,其最适温度为60℃,比野生型提高20℃,50℃半衰期为7h,是野生型酶的21倍。将突变体A190C/V240C用于典型PHA之一的聚羟基丁酸酯(polyhydroxybutyrate,PHB)降解,在50℃条件下,PHB的2 h和12 h降解率较野生型分别提高了2.1倍和3.8倍。本研究获得的TumPHAD突变体A190C/V240C具有耐高温、热稳定性好和PHB降解能力强的特点,对PHB的降解回收具有重要意义。 相似文献
13.
应用聚合酶链式反应快速特异鉴定假单胞菌和伯克霍尔德氏菌(R)-3-羟基酯酰载酯蛋白-辅酶A转酰基酶基因 总被引:4,自引:0,他引:4
聚羟基脂肪酸酯(PHA)是一类具有广泛应用前景的可降解生物塑料。因其可以以葡萄糖等廉价底物直接发酵生产PHA而日益受到重视。目前的研究表明在积累中长链PHA的假单胞菌中,由phaG基因编码的(R)-3-羟基酯酰载酯蛋白-辅酶A转酰基酶(PhaG)起关键作用,但目前为止对该蛋白还知之甚少。通过聚合酶链式反应(PCR)建立了一种快速、特异鉴定phaG基因的方法,应用该方法成功地从两株积累不同PHA的假单胞菌Pseudomonas stutzeri 1317和Pseudamanas nitroreducens 0802中分别克隆得到phaG基因,并在phaG基因突变株Pseudomonas putida PHAGx-21中表达成功。同时,还首次报道了从非假单胞菌菌株Burkholderia caryophylli AS 1.2741中鉴定得到phaG基因,提示PhaG介导的中长链PHA合成途径作为一种通用的代谢模式在细菌中广泛存在,为进一步实现从廉价的非相关底物合成中长链PHA提供了必要的分子生物学基础。 相似文献
14.
聚羟基脂肪酸酯 (PHA)是一类具有广泛应用前景的可降解生物塑料。因其可以以葡萄糖等廉价底物直接发酵生产PHA而日益受到重视。目前的研究表明在积累中长链PHA的假单胞菌中 ,由phaG基因编码的(R)3 羟基酯酰载酯蛋白 辅酶A转酰基酶 (PhaG)起关键作用 ,但目前为止对该蛋白还知之甚少。通过聚合酶链式反应 (PCR)建立了一种快速、特异鉴定phaG基因的方法 ,应用该方法成功地从两株积累不同PHA的假单胞菌Pseudomonasstutzeri 1317和Pseudomonasnitroreducens 080 2中分别克隆得到phaG基因 ,并在phaG基因突变株PseudomonasputidaPHAGN-21中表达成功。同时 ,还首次报道了从非假单胞菌菌株Burkholderiacaryophylli AS 1.274 1中鉴定得到phaG基因 ,提示PhaG介导的中长链PHA合成途径作为一种通用的代谢模式在细菌中广泛存在 ,为进一步实现从廉价的非相关底物合成中长链PHA提供了必要的分子生物学基础。 相似文献