首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NK cells are important for innate resistance to tumors and viruses. Engagement of activating Ly-49 receptors expressed by NK cells leads to rapid NK cell activation resulting in target cell lysis and cytokine production. The ITAM-containing DAP12 adapter protein stably associates with activating Ly-49 receptors, and couples receptor recognition with generation of NK responses. Activating Ly-49s are potent stimulators of murine NK cell functions, yet how they mediate such activities is not well understood. We demonstrate that these receptors trigger LFA-1-dependent tight conjugation between NK cells and target cells. Furthermore, we show that activating Ly-49 receptor engagement leads to rapid DAP12-dependent up-regulation of NK cell LFA-1 adhesiveness to ICAM-1 that is also dependent on tyrosine kinases of the Syk and Src families. These results indicate for the first time that activating Ly-49s control adhesive properties of LFA-1, and by DAP12-dependent inside-out signaling. Ly-49-driven mobilization of LFA-1 adhesive function may represent a fundamental proximal event during NK cell interactions with target cells involving activating Ly-49 receptors, leading to target cell death.  相似文献   

2.
Murine NK cells express Ly-49 family receptors capable of either inhibiting or activating lytic function. The overlapping patterns of expression of the various receptors have complicated their precise biochemical characterization. Here we describe the use of the Jurkat T cell line as the model for the study of Ly-49s. We demonstrate that Ly-49D is capable of delivering activation signals to Jurkat T cells even in the absence of the recently described Ly-49D-associated chain, DAP-12. Ly-49D signaling in Jurkat leads to tyrosine phosphorylation of TCRzeta and requires Syk/Zap70 family kinases and arginine 54 of Ly-49D, suggesting that Ly-49D signals via association with TCRzeta. Coexpression studies in 293-T cells confirmed the ability of Ly-49D to associate with TCRzeta. In addition, we have used this model to study the functional interactions between an inhibitory Ly-49 (Ly-49G2) and an activating Ly-49 (Ly-49D). Ly-49G2 blocks activation mediated by Ly-49D in an immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent manner. In contrast, Ly-49G2 was incapable of inhibiting activation by the TCR even though human killer cell inhibitory receptor (KIR) (KIR3DL2(GL183)) effectively inhibits TCR. Both the ability of Ly-49G2 to block Ly-49D activation and the failure of Ly-49G2 to inhibit TCR signaling were confirmed in primary murine NK cells and NK/T cells, respectively. These data demonstrate the dominant effects of the inhibitory receptors over those that activate and suggest an inability of the Ly-49 type II inhibitory receptors to efficiently inhibit type I transmembrane receptor signaling in T cells and NK cells.  相似文献   

3.
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.  相似文献   

4.
CD44 is a cell adhesion molecule implicated in leukocyte adhesion and migration, co-stimulation of T cells, and tumor metastasis. CD45 is a leukocyte-specific protein tyrosine phosphatase that dephosphorylates the Src family kinases, Lck and Fyn, in T cells. Positive regulation of Lck by CD45 is required for its effective participation in T cell receptor signaling events. Here, immobilized CD44 antibody induced a distinctive cell spreading in CD45(-), but not CD45(+), T cells, and this correlated with the induction of tyrosine-phosphorylated proteins. Two focal adhesion family kinases, Pyk2 and, to a lesser extent, FAK were inducibly phosphorylated, as was a potential substrate, Cas. CD44-mediated cell spreading and induced tyrosine phosphorylation were prevented by the Src family kinase inhibitor, PP2. Furthermore, 2-fold more Lck associated with CD44 in the low density sucrose fraction from CD45(-) T cells compared with CD45(+) T cells, suggesting that CD45 may regulate the association of Lck with CD44 in this fraction. Therefore, in CD45(-) T cells, CD44 signaling is mediated by Src family kinases, and this leads to Pyk2 phosphorylation, cytoskeletal changes, and cell spreading. This implicates CD45 in the negative regulation of Src family kinase-mediated CD44 signaling leading to T cell spreading.  相似文献   

5.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

6.
CD69 C-type lectin receptor represents a functional triggering molecule on activated NK cells, capable of directing their natural killing function. The receptor-proximal signaling pathways activated by CD69 cross-linking and involved in CD69-mediated cytotoxic activity are still poorly understood. Here we show that CD69 engagement leads to the rapid and selective activation of the tyrosine kinase Syk, but not of the closely related member of the same family, ZAP70, in IL-2-activated human NK cells. Our results indicate the requirement for Src family kinases in the CD69-triggered activation of Syk and suggest a role for Lck in this event. We also demonstrate that Syk and Src family tyrosine kinases control the CD69-triggered tyrosine phosphorylation and activation of phospholipase Cgamma2 and the Rho family-specific exchange factor Vav1 and are responsible for CD69-triggered cytotoxicity of activated NK cells. The same CD69-activated signaling pathways are also observed in an RBL transfectant clone, constitutively expressing the receptor. These data demonstrate for the first time that the CD69 receptor functionally couples to the activation of Src family tyrosine kinases, which, by inducing Syk activation, initiate downstream signaling pathways and regulate CD69-triggered functions on human NK cells.  相似文献   

7.
 Human natural killer (NK) cells express on their surface several members of the C-type lectin family such as NKR-P1, CD94, and NKG2 that are probably involved in recognition of target cells and delivery of signals modulating NK cell cytotoxicity. To elucidate the mechanisms involved in signaling via these receptors, we solubilized in vitro cultured human NK cells by a mild detergent, Brij-58, immunoprecipitated molecular complexes containing the NKR-P1 or CD94 molecules, respectively, by specific monoclonal antibodies, and performed in vitro kinase assays on the immunoprecipitates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and phospho-amino acid analysis revealed the presence of in vitro tyrosine phosphorylated proteins that were subsequently identified by re-precipitation (and/or by western blotting) as the respective C-type lectin molecules and Src family kinases Lck, Lyn, and Fyn. The NKR-P1 and the CD94-containing complexes were independent of each other and both very large, as judged by Sepharose 4B gel chromatography. Crosslinking of NKR-P1 on the cell surface induced transient in vivo tyrosine phosphorylation of cellular protein substrates. These results indicate involvement of the associated Src-family kinases in signaling via the NKR-P1 and CD94 receptors. Received: 4 February 1997 / Revised: 28 February 1997  相似文献   

8.
A role for the receptor protein tyrosine phosphatase alpha (PTPalpha) in immune cell function and regulation of Src family kinases was investigated using thymocytes from PTPalpha-deficient mice. PTPalpha-null thymocytes develop normally, but unstimulated PTPalpha-/- cells exhibit increased tyrosine phosphorylation of specific proteins, increased Fyn activity, and hyperphosphorylation of Cbp/PAG that promotes its association with C-terminal Src kinase. Elevated Fyn activity in the absence of PTPalpha is due to enhanced phosphorylation of Fyn tyrosines 528 and 417. Some PTPalpha is localized in lipid rafts of thymocytes, and raft-associated Fyn is specifically activated in PTPalpha-/- cells. PTPalpha is not a Cbp/PAG phosphatase, because it is not required for Cbp/PAG dephosphorylation in unstimulated or anti-CD3-stimulated thymocytes. Together, our results indicate that PTPalpha, likely located in lipid rafts, regulates the activity of raft Fyn. In the absence of PTPalpha this population of Fyn is activated and phosphorylates Cbp/PAG to enhance association with C-terminal Src kinase. Although TCR-mediated tyrosine phosphorylation was apparently unaffected by the absence of PTPalpha, the long-term proliferative response of PTPalpha-/- thymocytes was reduced. These findings indicate that PTPalpha is a component of the complex Src family tyrosine kinase regulatory network in thymocytes and is required to suppress Fyn activity in unstimulated cells in a manner that is not compensated for by the major T cell PTP and SFK regulator, CD45.  相似文献   

9.
Murine Ly-49D augments NK cell function upon recognition of target cells expressing H-2Dd. Ly-49D activation is mediated by the immunoreceptor tyrosine-based activation motif-containing signaling moiety Dap-12. In this report we demonstrate that Ly-49D receptor ligation can lead to the rapid and potent secretion of IFN-gamma. Cytokine secretion can be induced from Ly-49D+ NK cells after receptor ligation with Ab or after interaction with target cells expressing their H-2Dd ligand. Consistent with the dominant inhibitory function of Ly-49G, NK cells coexpressing Ly-49D and Ly-49G show a profound reduction in IFN-gamma secretion after interaction with targets expressing their common ligand, H-2Dd. Importantly, we are able to demonstrate for the first time that effector/target cell interactions using Ly-49D+ NK cells and H-2Dd targets result in the rapid phosphorylation of Dap-12. However, Dap-12 is not phosphorylated when Ly-49D+ NK cells coexpress the inhibitory receptor, Ly-49G. These studies are novel in describing Ly-49 activation vs inhibition, where two Ly-49 receptors recognize the same class I ligand, with the dominant inhibitory receptor down-regulating phosphorylation of Dap-12, cytokine secretion, and cytotoxicity in NK cells.  相似文献   

10.
11.
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.  相似文献   

12.
M Sieh  J B Bolen    A Weiss 《The EMBO journal》1993,12(1):315-321
CD45 is a tyrosine phosphatase expressed in all hematopoietic cells which is important for signal transduction through the T cell antigen receptor (TCR). Studies using CD45-deficient cells have revealed that Lck, a tyrosine kinase thought to be essential for TCR signaling, is hyperphosphorylated on Y505 in the absence of CD45. This site of tyrosine phosphorylation negatively regulates the function of the Src family of kinases. Here we provide evidence that CD45 can modulate the binding of the Lck to an 11 amino acid tyrosine phosphorylated peptide containing the carboxy-terminus of Lck (lckP). Significantly, CD45 did not influence the binding of Fyn, PLC gamma 1, GAP and Vav to the same phosphopeptide. Lck protein which bound the peptide was dephosphorylated on Y505 and consisted of only 5-10% of the total cellular Lck. Interestingly, there was a marked increase in binding 15-30 min after CD4 or TCR cross-linking. Taken together, our data suggest that CD45 specifically modulates the conformation of Lck in a manner consistent with the intramolecular model of regulation of Src-like kinases.  相似文献   

13.
Src family kinases are major regulators of various integrin-mediated biological processes, although their functional roles and substrates in cancer metastasis are unknown. We explored the roles of Src family tyrosine kinases in cell migration and the spread of K-1735 murine melanoma cell lines with low or high metastatic potential. Corresponding to elevated cell motility and spreading ability, Fyn was selectively activated among Src family kinases, and the cell motility was blocked by an inhibitor of Src family kinases. Significant tyrosine phosphorylation of cortactin, stable complex formation between activated Fyn and cortactin, and co-localization of cortactin with Fyn at cell membranes were all observed only in cells with high metastatic potential. Both integrin-mediated Fyn activation and hyperphosphorylation of cortactin were observed 2-5 h after stimulation in highly metastatic cells, and they required de novo protein synthesis. We demonstrate that cortactin is a specific substrate and cooperative effector of Fyn in integrin-mediated signaling processes regulating metastatic potential.  相似文献   

14.
Some data in the literature suggest that serine/threonine phosphorylation is required for activation of the mixed-lineage kinases (MLKs), a subgroup of mitogen-activated protein kinase kinase kinases (MAPKKKs). In this report, we demonstrate that the MLK family member DLK is activated and concurrently tyrosine-phosphorylated in cells exposed to the protein tyrosine phosphatase inhibitor vanadate. Tyrosine phosphorylation appears crucial for activation as incubation of vanadate-activated DLK molecules with a tyrosine phosphatase substantially reduced DLK enzymatic activity. Interestingly, the effects of vanadate on DLK are completely blocked by treatment with a Src family kinase inhibitor, PP2, or the expression of short hairpin RNA (shRNA) directed against Src. DLK also fails to undergo vanadate-stimulated tyrosine phosphorylation and activation in fibroblasts which lack expression of Src, Yes and Fyn, but reintroduction of wild-type Src or Fyn followed by vanadate treatment restores this response. In addition to vanadate, stimulation of cells with platelet-derived growth factor (PDGF) also induces tyrosine phosphorylation and activation of DLK by a Src-dependent mechanism. DLK seems important for PDGF signaling because its depletion by RNA interference substantially reduces PDGF-stimulated ERK and Akt kinase activation. Thus, our findings suggest that Src-dependent tyrosine phosphorylation of DLK may be important for regulation of its activity, and they support a role for DLK in PDGF signaling.  相似文献   

15.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

16.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

17.
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.  相似文献   

18.
NK cells are implicated in antiviral responses, bone marrow transplantation and tumor immunosurveillance. Their function is controlled, in part, through the Ly49 family of class I binding receptors. Inhibitory Ly49s suppress signaling, while activating Ly49s (i.e., Ly49D) activate NK cells via the DAP12 signaling chain. Activating Ly49 signaling has been studied primarily in C57BL/6 mice, however, 129 substrains are commonly used in gene-targeting experiments. In this study, we show that in contrast to C57BL/6 NK cells, cross-linking of DAP12-coupled receptors in 129/J mice induces phosphorylation of DAP12 but not calcium mobilization or cytokine production. Consistent with poor-activating Ly49 function, 129/J mice reject bone marrow less efficiently than C57BL/6 mice. Sequence analysis of receptors and DAP12 suggests no structural basis for inactivity, and both the 129/J and C57BL/6 receptors demonstrate normal function in a reconstituted receptor system. Most importantly, reconstitution of Ly49D in 129/J NK cells demonstrated that the signaling deficit is within the NK cells themselves. These unexpected findings bring into question any NK analysis of 129/J, 129Sv, or gene-targeted mice derived from these strains before complete backcrossing, and provide a possible explanation for the differences observed in the immune response of 129 mice in a variety of models.  相似文献   

19.
Syk regulation of phosphoinositide 3-kinase-dependent NK cell function   总被引:4,自引:0,他引:4  
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway controlling NK cytotoxicity, the signaling mechanism by which Syk associates with downstream effectors to drive NK lytic function has not been clearly defined. In NK92 cells, which express DAP12 but little DAP10/NKG2D, we now show that Syk acts upstream of PI3K, subsequently leading to the specific signaling of the PI3K-->Rac1-->PAK1-->mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-->ERK cascade that we earlier described. Tumor cell ligation stimulated DAP12 tyrosine phosphorylation and its association with Syk in NK92 cells; Syk tyrosine phosphorylation and activation were also observed. Inhibition of Syk function by kinase-deficient Syk or piceatannol blocked target cell-induced PI3K, Rac1, PAK1, mitogen-activated protein/ERK kinase, and ERK activation, perforin movement, as well as NK cytotoxicity, indicating that Syk is upstream of all these signaling events. Confirming that Syk does not act downstream of PI3K, constitutively active PI3K reactivated all the downstream effectors as well as NK cytotoxicity suppressed in Syk-impaired NK cells. Our results are the first report documenting the instrumental role of Syk in control of PI3K-dependent natural cytotoxicity.  相似文献   

20.
The tyrosine kinase Fyn is a member of the Src family kinases which are important in many integrin‐mediated cellular processes including cell adhesion and migration. Fyn has multiple phosphorylation sites which can affect its kinase activity. Among these phosphorylation sites, the serine 21 (S21) residue of Fyn is a protein kinase A (PKA) recognition site within an RxxS motif of the amino terminal SH4 domain of Fyn. In addition, S21 is critical for Fyn kinase‐linked cellular signaling. Mutation of S21A blocks PKA phosphorylation of Fyn and alters its tyrosine kinase activity. Expression of Fyn S21A in cells lacking Src family kinases (SYF cell) led to decreased tyrosine phosphorylation of focal adhesion kinase resulting in reduced focal adhesion targeting, which slowed lamellipodia dynamics and thus cell migration. These changes in cell motility were reflected by the fact that cells expressing Fyn S21A were severely deficient in their ability to assemble and disassemble focal adhesions. Taken together, our findings indicate that phosphorylation of S21 within the pPKA recognition site (RxxS motif) of Fyn regulates its tyrosine kinase activity and controls focal adhesion targeting, and that this residue of Fyn is critical for transduction of signals arising from cell‐extracellular matrix interactions. J. Cell. Physiol. 226: 236–247, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号