首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Spermatogenesis in Sparganophilus tamesis results in a filiform spermatozoon of the advanced type. Structures in proximal-distal sequence are the slender acrosome, the extremely elongate nucleus, the short cylindrical midpiece and the long flagellum. The acrosome is unique in those Lumbricina so far studied in persistence of the subvesicular space in the anterior (proximal) bulb formed by the primary acrosome vesicle, external to the acrosome tube and in extension of the acrosome rod into this proximal subvesicular space. A further unusual feature is the very long basal chamber in the acrosome tube, distal to the rod, as in the Phreodrilidae. The acrosome tube has a distal limen and its junction with the nucleus is domed. There is little similarity with the acrosome of the Lumbricidae, a family with which the Sparganophilidae have recently been grouped. The midpiece has the highest number of mitochondria yet recorded for oligochaetes. The number is deduced to be eight, of which seven are normally visible in cross section because one of the mitochondrial loci consists, uniquely for the Oligochaeta, of two mitochondria aligned longitudinally in tandem. The structure of the flagellum, including the arrangement of its peripheral glycogen granules, is typical for oligochaetes. The spermatozoon is straight, lacking a spiral coil or keel. These results are discussed in relation to oligochaete phylogeny.  相似文献   

2.
J. M. Healy 《Zoomorphology》1982,100(3):157-175
Summary Mature and developing euspermatozoa of the prosobranch gastropod Pyrazus ebeninus, have been examined using transmission electron microscopy and phase-contrast light microscopy. The head of the mature euspermatozoon consists of a conical acrosome capping a short, rod-shaped nucleus (laterally compressed posteriorly). A basal invagination in the nucleus contains the proximal portion of the axoneme and a dense attachment matrix. Four apparently non-helical mitochondrial elements (two large, two small) comprise the midpiece each being composed of curved, inclined cristal plates and a granular matrix. The structure and arrangement of the mitochondrial elements is thus distinguishable from the helical midpiece elements found in euspermatozoa of neogastropods and most mesogastropods and possibly is widespread in the Cerithiacea. A dense ring-like structure is found closely applied to the inside of the plasma membrane at the junction of midpiece and glycogen piece.Acrosome and midpiece formation and nuclear condensation have been studied in developing euspermatozoa. Acrosome development is divided into two phases: (1) a pre-attachment phase — during which a complex early acrosome is formed often at great distance from the nuclear apex, and (2) an attachment/post-attachment phase — during which the completed preattachment phase acrosome tilts into position at the nuclear apex and subsequently elongates. The nucleus passes through a recognizable sequence of condensation phases (reticular, fibrillar and lamellar phases). Microtubules surround both the nucleus and midpiece in the final phase of maturation. The four, elongate midpiece elements of the mature euspermatozoon are apparently derived from the four large, spherical mitochondria of the euspermatid.The potential usefulness of spermatozoal ultrastructure with regard to indicating affinities between groups of gastropod families is briefly discussed.Abbreviations a acrosome - ac euspermatozoon acrosomal cone - ar euspermatozoon axial rod - ax axoneme - bp basal plate - cy cytoplasmic droplet - cs cylindrical support structures of developing acrosome - dg dense granule of pre-attachment phase developing acrosome - dp dense plates of developing acrosomal cone - g glycogen granules - gp glycogen piece - G Golgi complex - j junction of midpiece and glycogen piece - l large midpiece element - m mitochondrion - M midpiece - mt microtubules - n nucleus - pm plasma membrane - sGv small Golgi vesicles - s small midpiece element  相似文献   

3.
The structure of mature and developing euspermatozoa of the rissoacean gastropod Stenothyra sp. has been studied using transmission electron microscopy. During cuspermiogenesis nuclei pass through fibrillar and lamellar phases of condensation. A Golgi-derived acrosome attaches to the nucleus during the fibrillar phase. Spherical mitochondria of early euspermatids fuse to form the mitochondrial sheath which undergoes metamorphosis to form helical midpiece elements, paracrystalline material and helical midpiece compartments. Mature euspermatozoa consist of a flat acrosome (acrosomal cone, axial rod, basal plate), short curved nucleus (2.5–2.8 μm) and elongate midpiece and glycogen piece. Coarse fibres associated with the axoneme emerge from a posterior invagination of the nucleus and continue into the initial portion of the midpiece. In the proximal portion of the midpiece, two helical compartments (filled with membranous material) are present—only one of which persists further posteriorly. No compartments occur in the distal region of the midpiece. Posterior to the midpiece, the axoneme is surrounded by tightly-packed (glycogen) granules and terminates within this region. The distal end of the euspermatozoon consists solely of glycogen granules surrounded by the plasma membrane. Although coarse fibres (associated with the axoneme), midpiece paracrystalline material and helical compartments are commonly reported in sperm of euthyneuran gastropods, this represents the first report of all three features in any prosobranch euspermatozoon.  相似文献   

4.
Plesiomorph characters for the oligochaete spermatozoon are proposed. The chief trends from these plesiomorphies have been elongation of the acrosome and its tube; withdrawal of the primary acrosome vesicle and the axial rod into the acrosome tube and development of a capitulum; development of connectives from the secondary tube to the axial rod (though there is some possibility that the reverse, absence of connectives, is plesiomorph); detorting and shortening of the midpiece (or possibly, again, the reverse) with an increase in numbers of mitochrondria from the plesiomorph four to eight; modification of the base of the tube to form a hen of variable form; and, in one line (lumbricids) flattening of the tip of the nucleus and correspondingly of the limen. Sperm ultrastructure, examined for 9 oligochaete families, corresponds well with taxonomic and phylogenetic groupings recently recognized by the author. However, convergent similarity of the phreodrilid sperm to that of the Lumbricina suggests a corresponding alteration of fertilization biology in the phreodrilids. The results indicate that the Haplotaxidae lie at the base of the opisthopores, though they do not unequivocally contraindicate acceptance of a Haplotaxis-like form as a stem form of the Haplotaxida (opisthopores and Haplotaxidae) and Tubificida. An even more basal position for prosopores, now represented by the Lumbriculida, cannot yet be dismissed.  相似文献   

5.
Ultrastructure of the Tubificid Acrosome (Annelida, Oligochaeta)   总被引:4,自引:0,他引:4  
The later morphogenesis of the acrosome of Limnodriloides winckelmanni and Rhyacodrilus arthingtonae is compared with that in Enchytraeus and in earthworms. After superposition of the acrosome on the tip of the nucleus the manchette continues apically beyond the nucleus to ensheath the acrosomal tube. At the posterior limit of, and probably contained in, the spacious/ terminal primary acrosomal vesicle is an electron-dense ring. A domed protrusion into the floor of the primary vesicle is tentatively regarded as the secondary acrosome vesicle. The axial rod when first observed is attached to the vesicle complex. Later, the rod detaches and extends deeply into the acrosome tube. A membrane ensheathes the tubificid axial rod but its exact homology with the complex layers surrounding the lumbricid or megascolecid axial rod is not clear. The domed apical region of the tubificid acrosome is probably a persistence of the primary acrosome vesicle and it is deduced that the acrosome vesicle surrounding the axial rod in lumbricids and megascolecids is a product, by invagination, of the secondary acrosome vesicle only.  相似文献   

6.
Ultrastructural changes of spermatids during spermiogenesis in a freshwater stingray, Himantura signifer, are described. Differentiation of spermatids begins with modification of the nuclear envelope adjacent to the Golgi apparatus, before the attachment of the acrosomal vesicle. A fibrous nuclear sheath extends over the nuclear surface from the site of acrosomal adherence. The conical apical acrosome is formed during nuclear elongation. At the same time, chromatin fibers shift from an initially random arrangement, assume a longitudinal orientation, and become helical before final nuclear condensation. An axial midpiece rod is formed at the posterior end of nucleus and connects to the base of the sperm tail. Numerous spherical mitochondria surround the midpiece axis. The tail originating from the posterior end of the midpiece is composed of the usual 9 + 2 axoneme accompanied by two longitudinal columns, which are equal in size and round in cross section. The two longitudinal columns are absent at the end piece. A distinctive feature of freshwater stingray sperm is its spiral configuration.  相似文献   

7.
The ultrastructure of mature spermatozoa is investigated for the first time in the Volutidae, based on the commercially significant South American species Zidona dufresnei (Donovan, 1823) (fresh material) and supplemented with observations on testicular (museum) material of the deep sea New Zealand species Provocator mirabilis (Finlay, 1926). Euspermatozoa of Z. dufresnei (ex sperm duct) consist of: (1) a tall-conical acrosomal vesicle (with short basal invagination, constricted anteriorly) which is flattened anteriorly and associated with an axial rod, centrally perforate basal plate and short accessory membrane; (2) a rod-shaped, solid and highly electron-dense nucleus (with short basal fossa containing centriolar complex and initial portion of a 9 + 2 axoneme); (3) an elongate midpiece consisting of the axoneme sheathed by 5–6 helical mitochondrial elements, each exhibiting a dense U-shaped outer layer; (4) an elongate glycogen piece (axoneme sheathed by nine tracts of putative glycogen granules); (5) a dense annulus at the junction of the midpiece and glycogen piece and (6) a short free tail region (axoneme surrounded only by plasma membrane). Paraspermatozoa of Z. dufresnei are vermiform and dimorphic: the first type contains approximately 14–20 axonemes (arranged peripherally and interspersed with microtubules) and numerous oblong dense vesicles, numerous less dense (round) vesicles, occasional, large lipid-like vesicles, and scattered mitochondria; the second type contains 25–31 axonemes (peripherally arranged, interspersed with microtubules), occasional mitochondria and extensive cytoplasm. Results obtained for P. mirabilis from testis material are essentially as observed in Z. dufresnei, although the euspermatozoan acrosome still has to achieve its compressed transverse profile. Observations on paraspermatozoa were limited by fixation quality of available (testis) tissues, but these cells are similar to the first type of Zidona paraspermatozoa. Although most of the euspermatozoal features are also observed in many neotaenioglossans and neogastropods, the U-shaped outer layer of each mitochondrial element has not previously been reported and may prove a diagnostic feature of the Volutidae, the subfamily Zidoniinae or possibly only the Zidonini (in which Z. dufresnei and P. mirabilis are currently placed).  相似文献   

8.
The ultrastructure of the euspermatozoa and the paraspermatozoa is investigated in Adelomelon ancilla, through histological section observed by transmission electron microscopy. Euspermatozoa of A. ancilla consists of: (1) a conical acrosomal vesicle (with a short basal invagination, constricted anteriorly) which is flattened at the apex and associated with an axial rod, a centrally perforated basal plate and a short accessory membrane, (2) a rod-shaped, solid and highly electron-dense nucleus (with a short basal fossa containing a centriolar complex and a initial portion of a 9 + 2 axoneme), (3) an elongate midpiece consisting of the axoneme sheathed by 5–6 helical mitochondrial elements each exhibiting a dense U-shaped outer layer, (4) an elongate glycogen piece (where the axoneme is sheathed by nine tracts of glycogen granules), (5) a dense annulus at the junction of the midpiece and glycogen piece, and (6) a short free tail region (where the axoneme is surrounded only by plasma membrane). We observed a parasperm in A. ancilla. This is vermiform in shape and is composed of multiple axonemes and extensive cytoplasm with numerous vesicles, and mitochondria are scattered inside the axonemes. Sperm of A. ancilla is characterized by the euspermatozoa type 2 and the paraspermatozoa morphology belongs to type 5. The U shaped electrodense mitochondrial element in the midpiece of the eusperm and the constriction in the acrosomal vesicle present in A. ancilla are exclusive. We suggest that these characteristics could have taxonomic importance, because these was observed in other volutids and have not been observed in the rest of caenogastropods studies. We consider that the morphology of paraspermatozoa in A. ancilla corresponds to the “lancet” type.  相似文献   

9.
Spermatozoa of Sinezona sp. (Scissurcllidac) arc examined ultrastructurally and compared with spermatozoa of other vetigastropods. Sinezona sperm are characterized by the following features: (1) a squat-conical acrosomal vesicle; (2) subacrosomal deposits–one forming a perinuclear sheath and the second forming a rod which almost penetrates the nucleus; (3) prominent nuclear invaginations enclosing the axial rod and centriolar regions; (4) a midpiece consisting of axoneme surrounded by a single, sleeve-like mitochondrion; (5) an annulus occurring posterior to the midpiece; and (6) a flagellum. Spermatozoa of Sinezona sp. are clearly modified in structure in comparison with spermatozoa of other pleurotomarioids and, more generally, most other vetigastropods (these retain multiple, spherical mitochondria and, with rare exceptions, do not have the ccntrioles located in a nuclear invagination).  相似文献   

10.
The intact acrosome of the Mytilus edulis spermatozoon consists of a conical vesicle, the basal side of which is deeply invaginated so that the whole vesicle forms a sheath around a very slender axial rod, about 2.7 µ long, inserted in a tube passing through the nucleus. The annular base of the acrosomal vesical is filled with a homogeneous substance; the outer wall of the vesicle is lined with a somewhat irregular layer of a particulate substance interspersed with very fine tubular elements, and its lumen is nearly filled by a strand of material which extends from the inner tip of the invagination to the apex of the acrosome. The lumen of the invagination appears empty except for the rod and a delicate sleeve-like structure which surrounds it. The plasma membrane of the sperm cell lies in immediate contact with the acrosomal membrane over its whole outer surface. In its general organization, this molluscan acrosome shows a rather close homology with that of the annelid Hydroides.  相似文献   

11.
The morphology of the slender, filiform spermatozoa of 13Protodrilus species of 22 different populations is investigated by light and transmission electron microscopy. All species have two types of spermatoza: fertile euspermatozoa, and paraspermatozoa, which are probably infertile and may comprise up to 20% of the total number of mature gametes. This is the first record of sperm dimorphism in polychaetes. The general construction pattern of the euspermatozoa is very complex. It shows a longish tapering acrosomal vesicle with an internal acrosomal rod, a rod-like conical nucleus, and a midpiece with numerous very complex supporting elements and two thin mitochondrial derivatives. Further, it has a ‘peribasal body’ surrounding the basal body of the axoneme, an anulus region with an ‘anchoring apparatus’ and an anulus cuff. Posteriorly, the tail region proper contains in some species 2 to 9 supporting rods. In several species the euspermatozoon shows very distinct and species-specific alternations of this ‘general pattern’ relating to e.g. size of sperm elements, structure of acrosome and nucleus, presence or absence of axial rod, and number, shape and size of supporting elements in midpiece and tail. In a number of species some sections of the euspermatozoon overlap with each other more or less strongly. The paraspermatozoon has a comparatively simple construction pattern and possesses no supporting structures in midpiece and tail region. The midpiece is very short and, in some species, entirely surrounded by its two thin and elongate mitochondrial derivatives. An axial rod is often missing or reduced; different sperm sections never overlap each other. In contrast to the euspermatozoa, the paraspermatozoa of the different species have a very similar ultrastructure. Their possible function in spermatophore transfer and histolytical opening of the female epidermis is discussed. A comparison of the different forms of euspermatozoa inProtodrilus elucidates possible plesiomorphous and apomorphous sperm traits. Very likely, the hypothetical plesiomorphous type of spermatozoa inProtodrilus has a very similar morphology to that of the paraspermatozoa, which for this reason are considered to be a sort of persisting representatives of the ancientProtodrilus sperm type. InProtodrilus, the different traits of the euspermatozoa represent excellent taxonomic characters for distinguishing species (e.g. ‘sibling species’). They can also be used well for phylogenetics within the genus, whereas the relations ofProtodrilus to other polychaete groups cannot be clarified solely on the basis of sperm characters, since in all groups the sperm structure is primarily an adaptation to a specific mode of reproduction. Generally, the value of sperm characters in phylogenetic considerations at higher taxonomic levels seems to be very limited due to the surprisingly wide range of different sperm structures within a single genus as is demonstrated in the present paper.   相似文献   

12.
13.
Mature spermatozoa from the hermaphroditic duct of adult snails were examined using various techniques of light microscopy as well as scanning and transmission electron microscopy. The sperm are approximately 557 μm in length including a dextrally spiral head approximately 13 μm long. The head consists of an electron-dense nucleus sculptured into a double-ridged spiral and an acrosome projecting approximately 0.45 μm beyond the apex of the nucleus. The acrosome consists of a membrane-bound vesicle approximately 0.1 μm in diameter and a column of homogeneous material which extends along one side of the terminal spiral of the nucleus. This material is separated from the nucleus by the nuclear envelope. The neck region, though similar to that found in other pulmonates, possesses a unique coiled structure surrounding the central doublet of the axoneme. The midpiece axoneme possesses a 9+9+2 configuration anteriorly grading into a 9+2 pattern for the majority of its length. There are three mitochondrial helices – one primary and two secondary – in the midpiece. Only the primary helix persists throughout the midpiece.  相似文献   

14.
Sperm ultrastructure is described for the first time in representativesof the pulmonate ‘limpet’ families Trimusculidae(Trimusculus costatus, T. reticulatus: marine) and Ancylidae(Burnupia stenochorias, Ancylus fluviatilis: freshwater). Allshow characteristic heterobranch sperm features (a spheroidalacrosomal vesicle supported by an acrosomal pedestal; a helicallykeeled nucleus and a complex, very elongate midpiece featuringparacrystalline and matrix layers sheathing the axoneme, coarsefibers and one or more glycogen helices). Posterior to the midpiece,a glycogen piece (axoneme sheathed by glycogen granules) andannulus are also present in all species. Taxonomically usefuldifferences in the shape and dimensions of the acrosome, nucleusand midpiece occur between the species. Results support thedecision of recent workers to transfer the Trimusculidae fromthe Siphonarioidea to a separate superfamily Trimusculoidea(characteristic sperm features including: narrow acrosomal pedestaloverlapping with nuclear apex; heavily keeled nucleus; midpiecewith strongly projecting secondary and glycogen helices). Therelationship of the Trimusculoidea to other pulmonates, as indicatedby sperm ultrastructure, remains uncertain largely because comparativedata for several important groups are unavailable. Spermatozoaof the two ancylids most closely resemble those of other investigatedplanor-boideans and to a lesser extent, those of the Lym-naeoidea.However, differences between Burnupia stenochorias (unique(?)accessory structure on the acrosomal pedestal; glycogen wedgeswithin the nuclear fossa; other features similar to planorbids)and Ancylus fluviatilis (all sperm features very similar toplanorbids) suggests that these patelliform ancylids are notclosely related. (Received 20 November 1997; accepted 23 January 1998)  相似文献   

15.
Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species ofTurbonilla, Pyrgulina, Cingulina andHinemoa) are presented. During spermatid developement, the condensing nucleus becomes initially anterio-posteriorly compressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electrondense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation (elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath (‘manchette’). Pyramidellid spermatozoa consist of an acrosomal complex (round to ovoid apical vesicle; column-shaped acrosomal pedestal), helically-keeled nucleus (short, 7–10 μm long, shallow basal invagination for axoneme/coarse fibre attachment), elongate helical midpiece (composed of axoneme, coarse fibres, paracrystalline and matrix materials, glycogen-filled helix), glycogen piece (length variable, preceeded by a dense ring structure at junction with midpiece). The features of developing and mature spermatozoa observed in the Pyramidellidae are as observed in opisthobranch and pulmonate gastropods indicating that the Pyramidelloidea should be placed within the Euthyneura/Heterobranchia, most appropriately as a member group of the Opisthobranchia.  相似文献   

16.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the sparid fish Sparus aurata L. The mature spermatozoon of gilthead sea bream belongs, like that of the other sparid fish, to a "type I" as defined by Mattei (1970). It has a spherical head which lacks an acrosome, a short, irregularly-shaped midpiece and a long cylindrical tail. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The two centrioles are approximately perpendicular to each other and show a conventional "9+0" pattern. The proximal centriole is associated with a cross-striated cylindrical body lying inside a peculiar satellite nuclear notch which appears as a narrow invagination of the nuclear fossa. The distal centriole is attached to the nuclear envelope by means of a lateral plate and radial fibres made of an electron-dense material. The short midpiece houses one mitochondrion. The flagellum is inserted perpendicularly into the base of the nucleus and contains the conventional 9+2 axoneme.  相似文献   

17.
Testicular samples were collected to describe the ultrastructure of spermiogenisis in Alligator mississipiensis (American Alligator). Spermiogenesis commences with an acrosome vesicle forming from Golgi transport vesicles. An acrosome granule forms during vesicle contact with the nucleus, and remains posterior until mid to late elongation when it diffuses uniformly throughout the acrosomal lumen. The nucleus has uniform diffuse chromatin with small indices of heterochromatin, and the condensation of DNA is granular. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. Once the acrosome has completed its development, the nucleus of the early elongating spermatid becomes associated with the cell membrane flattening the acrosome vesicle on the apical surface of the nucleus, which aids in the migration of the acrosomal shoulders laterally. One endonuclear canal is present where the perforatorium resides. A prominent longitudinal manchette is associated with the nuclei of late elongating spermatids, and less numerous circular microtubules are observed close to the acrosome complex. The microtubule doublets of the midpiece axoneme are surrounded by a layer of dense staining granular material. The mitochondria of the midpiece abut the proximal centriole resulting in a very short neck region, and possess tubular cristae internally and concentric layers of cristae superficially. A fibrous sheath surrounds only the axoneme of the principal piece. Characters not previously described during spermiogenesis in any other amniote are observed and include (1) an endoplasmic reticulum cap during early acrosome development, (2) a concentric ring of endoplasmic reticulum around the nucleus of early to middle elongating spermatids, (3) a band of endoplasmic reticulum around the acrosome complex of late developing elongate spermatids, and (4) midpiece mitochondria that have both tubular and concentric layers of cristae. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Onychophoran sperm share striking apomorphies with sperm of oligcchaetes: the elongate, cylindrical, strongly condensed nucleus with (enchytraeid oligochaetes only) spiral keel(s); interpolation of mitochondria, which are spiral as in some microdriles, between nucleus and axoneme (autapomorphy); presence of postmitochondrial annulus; occurrence of a basal cylinder at the anterior end of the two central singlets (autapomorphy). Onychophoran sperm differ notably from oligochaete sperm: in possessing periacrosomal material; in the helical coiling, reduction, or absence of the acrosome vesicle (though acrosomal coiling occurs in leeches); in the conical subacrosomal structure contrasting with the characteristic acrosome tube of euclitellates; in the absence of a perforatorium (though these two features could be consequent on the reduction of the acrosome); in lacking a distinct padlike thickening of the anterior nuclear envelope; in possessing (external to the mutual 9 + 2 axoneme) 9 peripheral singlets and a subplasmalemmal microtubular manchette (also present in questid annelids); and in the scattered, rather than regularly arranged, peripheral glycogen of the axoneme; they also lack two additional fibres which give the characteristic tetragon of the oligochaete axoneme; and, although the centriolar triplets are disrupted, having a more complete distal centriole than in euclitellates. The remarkable similarities to euclitellate sperm, coupled with embryological similarities between Onychophora and Euclitellata, suggest that the onychophoran-euclitellate assemblage is a monophyletic group and the sister-group of the myriapod-hexapod assemblage. Wider phylogenetic implications of these findings are discussed.  相似文献   

19.
In Cristatella mucedo spermiogenesis occurs in a morula consisting of a large number of spermatids connected with a central cytophore. The mature sperm cell is filiform and consists of a head, a midpiece and a tail region, the latter two separated by a deep circular constriction. The comparatively short head contains a drop-shaped, bilaterally symmetrical and pointed nucleus capped by a minute acrosome. The single centriole is placed in a deep posterior invagination of the nucleus followed by the axoneme with the typical 9 + 2 pattern. The elongated midpiece is 0.9–1.1 μm thick and contains several helices of mitochondria surrounding the axoneme. The tail is thicker (1.3 μm) and richer in cytoplasm with many compact accumulations of an electron-dense substance lying peripherally and another less dense material wrapped around the axoneme. The course of the spermiogenesis and the fine structure of the sperm are very similar to that of Plumatella fungosa. Comparison with other species shows that the same sperm type is recognizable in four of the five families of Phylactolaemata and, provided it occurs also in the fifth family, the Stephanellidae, is a synapomorphy of the entire class.  相似文献   

20.
Sperm ultrastructural features of the honeycomb (foam) oysters Hyotissa hyotis, H. sinensis, and H. mcgintyi (Gryphaeidae) are described and compared with other Ostreoidea and more generally with other pteriomorphian Bivalvia. Spermatozoa of H. sinensis and H. mcgintyi (the type species of Parahyotissa Harry 1985) exhibit (1) a broad, low‐conical acrosomal vesicle; (2) subacrosomal material (very electron‐dense granular material and an almost electron‐lucent axial rod); (3) a spheroidal nucleus with a wide anterior invagination (filled with subacrosomal components); (4) a midpiece composed of four spherical mitochondria surrounding a pair of centrioles (rootlet associated with proximal centriole); and (5) a flagellum. Sperm of Hyotissa hyotis (type species of Hyotissa Stenzel 1971) differ markedly from those of H. sinensis and H. mcgintyi, in having (1) a conical acrosomal vesicle showing coarse granular texture anteriorly; (2) a very electron‐dense axial rod; (3) a barrel‐shaped nucleus with a long, narrow anterior invagination (filled with both subacrosomal components) and a basal invagination partly housing the proximal centriole; and (4) five midpiece mitochondria and no proximal centriolar rootlet. Results indicate that H. sinensis should be relocated to another genus, possibly a revised genus Parahyotissa, and also show that the sperm of H. sinensis and H. mcgintyi show many similarities to those of the Ostreidae, with the exception that the ‘axial rod’ component of the subacrosomal material is less electron‐dense than the surrounding substance (more dense in Ostreidae, as in H. hyotis). No family defining sperm features of the Gryphaeidae can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号