首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Podosomes are adhesion structures characteristic of the myeloid cell lineage, encompassing osteoclasts, dendritic cells and macrophages. Podosomes are actin-based structures that are dynamic and capable of self-organization. In particular in the osteoclast, podosomes densely pack into a thick ring called the sealing zone. This adhesion structure is typical of osteoclasts and necessary for the resorption of the bone matrix. We thought to explore in more details the role of podosomes during osteoclast differentiation and migration. To this end, we made from soft to stiff substrates that had not been functionalized with extracellular matrix proteins. Such substrates did not support podosome formation in osteoclasts. With such devices, we could show that integrin activation was sufficient to drive podosome assembly, in a substrate stiffness independent fashion. We additionally report here that osteoclast differentiation is a podosome-independent process. Finally, we show that osteoclasts devoid of podosomes can migrate efficiently. Our study further illustrates the great capacity of myeloid cells to adapt to the different environments they encounter during their life cycle.  相似文献   

2.
3.
《Matrix biology》2000,19(2):97-105
Integrins are heterodimeric adhesion receptors that mediate cell–matrix and cell–cell interactions. Osteoclasts highly express the αvβ3 integrin, which binds to a variety of extracellular matrix proteins including vitronectin, osteopontin and bone sialoprotein. RGD-containing peptides, RGD-mimetics and αvβ3 blocking antibodies inhibit bone resorption in vitro and in vivo, suggesting that this integrin plays an important role in osteoclast function. RGD-containing peptides were shown to raise cytosolic calcium in osteoclasts. Furthermore, several signaling and adaptor molecules were found to be involved in αvβ3 integrin-dependent signaling pathways, including phosphatidylinositol 3-kinase, c-Src, PYK2 and p130cas. In addition, cytoskeletal molecules such as paxillin, vinculin, gelsolin and F-actin are recruited to adhesion contacts upon integrin activation. Many of these molecules signaling and cytoskeletal localize to the sealing zone of actively resorbing osteoclasts, suggesting that they play a role in linking the adhesion of osteoclasts to the bone matrix with the cytoskeletal organization and the polarization and activation of these cells for bone resorption.  相似文献   

4.
He Y  Staser K  Rhodes SD  Liu Y  Wu X  Park SJ  Yuan J  Yang X  Li X  Jiang L  Chen S  Yang FC 《PloS one》2011,6(9):e24780
The extracellular signal-regulated kinases (ERK1 and 2) are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/-) bone marrow mononuclear cells (BMMNCs) demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/-) BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.  相似文献   

5.
N-Methyl-d-aspartate (NMDA) glutamate receptors, widely distributed in the nervous system, have recently been identified in bone. They are expressed and are functional in osteoclasts. In the present work, we have studied the effects of specific antagonists of NMDA receptors on osteoclast activation and bone resorption. Using an in vitro assay of bone resorption, we showed that several antagonists of NMDA receptors binding to different sites of the receptor inhibit bone resorption. Osteoclast activation requires adhesion to the bone surface, cytoskeletal reorganization and survival. We demonstrated by autoradiography that the specific NMDA receptor channel blocker, MK 801, binds to osteoclasts. This antagonist had no effect on osteoclast attachment to bone and did not induce osteoclast apoptosis. In contrast, MK 801 rapidly decreased the percentage of osteoclasts with actin ring structures that are associated with actively resorbing osteoclasts. These results suggest that NMDA receptors expressed by osteoclasts may be involved in adhesion-induced formation of the sealing zone required for bone resorption.  相似文献   

6.
Osteoclasts are responsible for bone resorption and play an important role in physiological and pathological bone metabolism. Osteoclast migration across bone surfaces is essential for bone resorption, and a previous study demonstrated the role of autophagy in osteoclastogenesis and acid secretion. However, the role of autophagy in osteoclast migration remains unclear. Osteoclast migration requires the successive and rapid assembly and disassembly of podosome rings. In this study, we show that kindlin3, an important adaptor protein in the podosome, can interact with LC3B and undergo autophagy-mediated protein degradation to promote the disassembly of the podosome.Moreover, further analyses showed that the inhibition of autophagy increased kindlin3 levels and enhanced the interaction between kindlin3 and integrin β3. The over activation of integrins inhibits the disassembly of obsolete podosome rings, resulting in disorganization of the actin cytoskeleton and impaired migration in osteoclasts. Our results show that LC3B affects osteoclast migration and FAK/AKT activation by modulating integrin activation via a kindlin3-mediated inside-out signal from the extracellular matrix. Based on these results, we propose that LC3 is an important target for regulating osteoclast migration.  相似文献   

7.
An excess of osteoclastic bone resorption relative to osteoblastic bone formation results in progressive bone loss, characteristic of osteoporosis. Understanding the mechanisms of osteoclast differentiation is essential to develop novel therapeutic approaches to prevent and treat osteoporosis. We showed previously that Wrch1/RhoU is the only RhoGTPase whose expression is induced by RANKL during osteoclastogenesis. It associates with podosomes and the suppression of Wrch1 in osteoclast precursors leads to defective multinucleated cell formation. Here we further explore the functions of this RhoGTPase in osteoclasts, using RAW264.7 cells and bone marrow macrophages as osteoclast precursors. Suppression of Wrch1 did not prevent induction of classical osteoclastic markers such as NFATc1, Src, TRAP (Tartrate-Resistant Acid Phosphatase) or cathepsin K. ATP6v0d2 and DC-STAMP, which are essential for fusion, were also expressed normally. Similar to the effect of RANKL, we observed that Wrch1 expression increased osteoclast precursor aggregation and reduced their adhesion onto vitronectin but not onto fibronectin. We further found that Wrch1 could bind integrin ß3 cytoplasmic domain and interfered with adhesion-induced Pyk2 and paxillin phosphorylation. Wrch1 also acted as an inhibitor of M-CSF-induced prefusion osteoclast migration. In mature osteoclasts, high Wrch1 activity inhibited podosome belt formation. Nevertheless, it had no effect on mineralized matrix resorption. Our observations suggest that during osteoclastogenesis, Wrch1 potentially acts through the modulation of αvß3 signaling to regulate osteoclast precursor adhesion and migration and allow fusion. As an essential actor of osteoclast differentiation, the atypical RhoGTPase Wrch1/RhoU could be an interesting target for the development of novel antiresorptive drugs.  相似文献   

8.
Proline-rich tyrosine kinase 2 (PYK2) is the main adhesion-induced kinase in bone-resorbing osteoclasts. Previous studies have shown that ligation of alpha(v)beta(3) integrin in osteoclasts induces c-Src-dependent tyrosine phosphorylation and PYK2 activation, leading to cytoskeletal rearrangement, migration, and polarization of these cells. In this study, we examined the role of PYK2 kinase activity and its major autophosphorylation site in adhesion-dependent signaling and cytoskeletal organization during osteoclast spreading and migration. By infecting pre-fusion osteoclasts using recombinant adenovirus expressing PYK2 and its mutants, we demonstrated that mutation at the autophosphorylation site (Y402F) abolishes PYK2 association with c-Src and reduces significantly phosphorylation at tyrosines 579/580 and 881 resulting in inhibition of osteoclast spreading and bone resorption. Overexpression of the kinase-dead PYK2(K475A) mutant had no effect on cell spreading, interaction with c-Src, or the phosphorylation level of Tyr-402, Tyr-579/580, and Tyr-881 relative to PYK2(wt)-expressing cells. Taken together these findings suggest that Tyr-402 is the major docking site for c-Src and can be phosphorylated by another tyrosine kinase in osteoclasts but not in HEK293 cells. Interestingly, both PYK2(Y402F) and PYK2(K457A) translocate normally to podosomes and have no effect on macrophage colony-stimulating factor-induced osteoclast migration. Whereas PYK2(Y402F) dominant negatively blocks osteoclast spreading and bone resorption, PYK2(K457A) may function in part as an adaptor by initially recruiting c-Src to the adhesion complex, which appears to activate PYK2 by phosphorylating additional tyrosines in its regulatory and C-terminal domains. We thus concluded that phosphorylation at Tyr-402 in PYK2 is essential in the regulation of adhesion-dependent cytoskeletal organization in osteoclasts.  相似文献   

9.
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.  相似文献   

10.
Osteoclasts are signaled by the bone matrix proteins fibronectin (FN), vitronectin (VN), and osteopontin (OPN) via integrins. To perform their resorptive function, osteoclasts cycle between compact (polarized), spread (non‐resorbing) and migratory morphologies. Here we investigate the effects of matrix proteins on osteoclast morphology and how those effects are mediated using RAW 264.7 cells differentiated into osteoclasts on FN, VN, and OPN‐coated culture dishes. After 96 h, 80% of osteoclasts on FN were compact while 25% and 16% on VN were in compact and migratory states respectively. In contrast, OPN induced osteoclast spreading. Furthermore, osteoclasts formed on VN and FN were two‐ to fourfold smaller than those formed on OPN in the 21–30 nuclei/osteoclast group. These effects were not due to defects in cytoskeletal reorganization of osteoclasts on VN and FN, demonstrated by the ability of these cells to spread in response to 35 ng/ml macrophage colony stimulating factor (M‐CSF). Conversely, osteoclasts on OPN failed to spread when induced by M‐CSF. Moreover, the extracellular pH on FN and VN (7.25 and 7.3, respectively) was significantly lower than that on OPN (~7.4). We further investigated the role of extracellular pH and found that at pH 7.5 the duration of an osteoclast's compact phase was 25.6 min and that of the spread phase was 62.5 min. Reducing the pH to 7.0 increased the frequency of osteoclast cycling by threefold. These results show that matrix proteins play a role in regulating osteoclast morphology, possibly via altering extracellular and intracellular pH. J. Cell. Biochem. 111: 350–361, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.  相似文献   

12.
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption.  相似文献   

13.
Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage. In this study, we examined the effect of MIP-1 gamma, a C-C chemokine family member, on receptor activator of NF-kappa B ligand (RANKL)-stimulated osteoclast differentiation, survival, and activation. RANKL induced osteoclasts to dramatically increase production of MIP-1 gamma and to also express the MIP-1 gamma receptor CCR1, but had only minor effects on the related C-C chemokines MIP-1 alpha and RANTES. Neutralization of MIP-1 gamma with specific Ab reduced RANKL-stimulated osteoclast differentiation by 60-70%. Mature osteoclasts underwent apoptosis within 24 h after removal of RANKL, as shown by increased caspase 3 activity and DNA fragmentation. Apoptosis was reduced by the addition of exogenous MIP-1 gamma or RANKL, both of which increased NF-kappa B activation in osteoclasts. Neutralization studies showed that the prosurvival effect of RANKL was in part dependent on its ability to induce MIP-1 gamma. Finally, osteoclast activation for bone resorption was stimulated by MIP-1 gamma. Taken together, these results demonstrate that MIP-1 gamma plays an important role in the differentiation and survival of osteoclasts, most likely via an autocrine pathway.  相似文献   

14.
The stimulators of bone resorption, prostaglandin E(2) (PGE(2)) and 1,25-dihydroxyvitamin D(3) (1,25D(3)), act through osteoblast-like cells to activate osteoclasts. One candidate for the intermediary produced by osteoblasts that subsequently stimulates the osteoclast is osteoprotegerin ligand (OPGL). OPGL has been shown to stimulate osteoclast differentiation and activation. The aim of the work reported here was to determine if soluble recombinant extracellular domain of human OPGL would bring about the change in osteoclast adhesion from the periosteum of mouse calvaria to the adjacent bone surface that occurs with the above-mentioned stimulators of resorption. This change in adherence or translocation of osteoclasts onto the bone surface required the expression and functioning of the integrin subunit, beta 3. We show that this soluble OPGL, like PGE(2) and 1,25D(3), stimulated the release of osteoclasts from the periosteum and their adherence to the bone surface accompanied by an increase in staining for immunolocalized integrin subunit beta 3. Recombinant human osteoprotegerin (OPG), which binds strongly to OPGL, inhibited this translocation of osteoclasts that occurred with PGE(2) and 1,25D(3), leaving integrin beta-3-negative osteoclasts on the periosteum. PGE(2) and 1,25D(3) increased the expression of messenger RNA for OPGL compared with indomethacin-treated controls after 6 h exposure. Evidence is presented that the change in the adhesion of osteoclasts from the periosteum to the bone surface, resulting in osteoclast activation, is mediated by OPGL.  相似文献   

15.
Dental disease due to osteoclast over-activity reaches epidemic proportions in older domestic cats and has also been reported in wild cats. Feline osteoclastic resorptive lesions (FORL) involve extensive resorption of the tooth leaving it liable to root fracture and subsequent tooth loss. The aetio-pathogenesis of FORL is not known. Recent work has shown that systemic acidosis causes increased osteoclast activation and that loci of infection or inflammation in cat mouth are likely to be acidotic. To investigate this, we generated osteoclasts from cat blood and found that they formed in large numbers (approximately 400) in cultures on bovine cortical bone slices. Acidosis caused an increase in the size of cells-in cultures maintained up to 14 days at basal pH 7.25, mean osteoclast area was 0.01 +/- 0.003 mm(2), whereas an 8.6-fold increase was observed in cells cultured between 11 and 14 days at pH 7.15 (0.086 +/- 0.004 mm(2)). Acidosis caused a modest increase in the number of osteoclasts. Exposure to pH 6.92 exhibited a 5-fold increase in the area of bone slices covered by resorption lacunae ( approximately 70% bone slice resorbed). In line with this finding, significant increases were observed in the expression of cathepsin K and proton pump enzymes (both approximately 3-fold) that are key enzymes reflective of resorptive activity in osteoclasts. These results demonstrate that acidosis is a major regulator of osteoclast formation and functional activation in the cat, and suggest that local pH changes may play a significant role in the pathogenesis of FORL.  相似文献   

16.
During bone resorption, osteoclasts are exposed to high Ca2+ concentrations (up to 40 mM). The role of high extracellular Ca2+ in receptor activator of NF-kappaB ligand (RANKL)-mediated osteoclast survival and their functional interrelationship is unclear. In this study, we show that RANKL enhances osteoclast tolerance to high extracellular Ca2+ by protecting the cell from cell death in a dose dependent manner. We have provided evidence that RANKL does this by attenuating high extracellular Ca2+-induced Ca2+ elevations. Moreover, we have found that high extracellular Ca2+-induced cell death was partially inhibited by a caspase-3 inhibitor, suggesting caspase-3-mediated apoptosis is involved. Conversely, using reporter gene assays and Western blot analysis, we have demonstrated that high extracellular Ca2+ desensitizes the RANKL-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK), and inhibits constitutive and RANKL-stimulated ERK phosphorylation, indicating a negative feed-back mechanism via specific RANKL signaling pathways. Taken together, this study provides evidence for a reciprocal regulation between high extracellular Ca2+ and RANKL signaling in RAW cell derived osteoclasts. Our data imply a cross talk mechanism of extracellular Ca2+ on osteoclast survival through the regulation of RANKL.  相似文献   

17.
Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.  相似文献   

18.
ADAMs (A Disintegrin And Metalloprotease domain) are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Since such events are critical for bone resorption and osteoclast recruitment, we investigated whether they require ADAMs. We report here which ADAMs we have identified in bone cells, as well as our analysis of the generation, migration and resorptive activity of osteoclasts in developing metatarsals of mouse embryos lacking catalytically active ADAM 17 [TNFalpha converting enzyme (TACE)]. The absence of TACE activity still allowed the generation of cells showing an osteoclastic phenotype, but prevented their migration into the core of the diaphysis and the subsequent formation of marrow cavity. This suggests a role of TACE in the recruitment of osteoclasts to future resorption sites.  相似文献   

19.
CD44 and MMP-9 are implicated in cell migration. In the current study, we tested the hypothesis that actin polymerization is critical for CD44 surface expression and MMP-9 activity on the cell surface. To understand the underlying molecular mechanisms involved in CD44 surface expression and MMP-9 activity on the cell surface, osteoclasts were treated with bisphosphonate (BP) alendronate, cytochalasin D (Cyt D), and a broad-spectrum MMP inhibitor (GM6001). BP has been reported to block the mevalonate pathway, thereby preventing prenylation of small GTPase signaling required for actin cytoskeleton modulation. We show in this study that osteoclasts secrete CD44 and MMP-9 into the resorption bay during migration and bone resorption. Results indicate that actin polymerization is critical for CD44 surface expression and osteoclast function. In particular, the surface expression of CD44 and the membrane activity of MMP-9 are reduced in osteoclasts treated with alendronate and Cyt D despite the membrane levels of MMP-9 being unaffected. Although GM6001 blocked MMP-9 activity, osteoclast migration, and bone resorption, the surface levels of CD44 were unaffected. We suggest that the surface expression of CD44 requires actin polymerization. Disruption of podosome and actin ring structures by Cyt D and alendronate not only resulted in reduced localization of MMP-9 in these structures but also in osteoclast migration and bone resorption. These results suggest that inhibition of actin polymerization by alendronate and Cyt D is effective in blocking CD44/MMP-9 complex formation on the cell surface, secretion of active form of MMP-9, and osteoclast migration. CD44/MMP-9 complex formation may signify a unique motility-enhancing signal in osteoclast function.  相似文献   

20.
《The Journal of cell biology》1990,111(6):2543-2552
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose- dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号