首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hemolin is hemolymph protein that is a member of the immunoglobulin superfamily. Its induced expression after bacterial infection suggests that it functions in the immune response. In this paper, we describe the expression of the Manduca sexta hemolin gene at certain developmental stages in the absence of microbial challenge. Hemolin was present at a very low level in hemolymph of naive larvae until the beginning of the wandering stage prior to pupation, when its concentration in hemolymph increased dramatically. At the same time, hemolin could be found in the fluid contained in the midgut lumen. The appearance of hemolin mRNA in fat body and midgut at the beginning of the wandering stage correlated with the presence of hemolin in the hemolymph and midgut lumen. Hemolin was present in hemolymph through the pupal and adult stages. Hemolin was also present in newly deposited eggs, and persisted in eggs throughout embryonic development. A hemolin cDNA isolated from an adult fat body library had the same sequence as those previously obtained from larval libraries. Hemolin purified from hemolymph of bacteria-injected larvae, from hemolymph of naive wandering stage larvae and adult moths, and from midgut fluid of wandering stage larvae had the same apparent mass, which was consistent with the mass predicted from the hemolin cDNA sequence. Hemolin from hemolymph of wandering stage larvae did not contain any detectable carbohydrate, but hemolin from the hemolymph of bacteria-injected larvae and from naive adult moths was associated with carbohydrate, although of different amounts and composition. These results suggest that a single hemolin gene is developmentally regulated and is also induced when insects are exposed to microbial infection. M. sexta hemolin apparently lacks post-translational covalent glycosylation, but instead is associated under some conditions with non-covalently bound carbohydrates. Arch.  相似文献   

2.
Artificial selection on body size in Manduca sexta produced genetic strains with large and small body sizes. The wing-body allometries of these strains differed significantly from the wild type. Selection on small body size led to a change in the scaling of wing and body size without changing the allometry: the wings were smaller relative to the body, but to the same degree at all body sizes. Selection for large body size led to a change in allometry with a decrease in the allometric coefficient, wing size becoming progressively smaller relative to body as body size increased. When larvae were deprived of food so as to produce adults of a range of small body sizes, all strains retained the same allometric coefficient but showed an increase in the scaling factor. Thus individuals starved as larvae had a smaller adult body size but had proportionally larger wings than fed individuals. We analyzed the developmental processes that could give rise to this pattern of allometries. Differences in the relative growth of body and wing disks can account for the differences in the allometric coefficients among the three body size strains. The change in wing-body allometry at large body sizes was primarily due to an insufficient time period for growth. The available time period for growth of the wing imaginal disks poses a significant constraint on the proportional growth of wings, and thus on the evolution of large body size.  相似文献   

3.
Predel R  Herbert Z  Eckert M 《Peptides》2003,24(10):1457-1464
We used a combination of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and immunocytochemistry to investigate the peptides from abdominal perisympathetic organs of Manduca sexta. Altogether three mass peaks, detected in mass spectra from single abdominal perisympathetic organs were identical with already known neuropeptides, namely CAP(2b), CCAP, and Manduca-allatotropin. Only CAP(2b) was found throughout the postembryonic development. In larvae, perisympathetic organs of the abdominal ganglia 1 and 7 do not accumulate neuropeptides. During the metamorphosis, the number of putative hormones stored in the abdominal perisympathetic organs, increases dramatically. Not a single substance, however, obtained in mass spectra of larval perisympathetic organs disappeared in the respective adult neurohemal organs. Peptides from abdominal perisympathetic organs are different from those of thoracic perisympathetic organs and the retrocerebral complex. Manduca-FLRFa-2 and -3 are enriched in thoracic perisympathetic organs; FLRFa-1, corazonin and adipokinetic hormone are abundant peptides of the retrocerebral complex. The majority of ion signals, however, represent unknown substances. An antiserum which recognized CAP(2b) allowed the morphological characterization of a median neurosecretory system in the abdominal ventral nerve cord of M. sexta, which resembles that of cockroach embryos. Double stainings confirmed that crustacean cardioactive peptide (CCAP) becomes colocalized with CAP(2b) in median neurosecretory cells during the last larval instar. This colocalization continues in adult insects.  相似文献   

4.
Triglycerides (TG) stores build up in the insect fat body as lipid droplets at times of excess of food. The mobilization of fat body triglyceride (TG) is stimulated by adipokinetic hormones (AKH). The action of AKH involves a rapid activation of cAMP-dependent protein kinase (PKA). Recent in vitro studies have shown that PKA phosphorylates and activates the TG-lipase substrate, the lipid droplets. Conversely, purified TG-lipase from Manduca sexta fat body is phosphorylated by PKA in vitro but is not activated. This study was directed to learn whether or not AKH promotes a change in the state of phosphorylation of the lipase in vivo, and what are the relative contributions of cytosol and lipid droplets to the overall increase of lipolysis triggered by AKH. TG-lipase activity of fat body cytosols isolated from control and AKH-treated insects was determined against the native substrate, in vivo [3H]-TG radiolabeled lipid droplets, obtained from control and AKH-treated insects. The lipase activity of the system composed of AKH-cytosol and AKH-lipid droplets (11.1 +/- 2.1 nmol TG/min-mg) was 3.1-fold higher than that determined with control cytosol and lipid droplets (3.6 +/- 0.5 nmol TG/min-mg). Evaluation of the role of AKH-induced changes in the lipid droplets on lipolysis showed that changes in the lipid droplets are responsible for 70% of the lipolytic response to AKH. The remaining 30% appears to be due to AKH-dependent changes in the cytosol. However, the phosphorylation level of the TG-lipase was unchanged by AKH, indicating that phosphorylation of the TG-lipase plays no role in the activation of lipolysis induced by AKH.  相似文献   

5.
Adipokinetic hormone, a decapeptide isolated from the locust, stimulates mobilization of diacylglycerols from the locust fat body and loading of the lipid transport protein, lipophorin. Injection of the synthetic locust adipokinetic hormone into a sphinx moth, Manduca sexta, causes lipid loading of lipophorin. The lipophorin decreases in density from 1.11 to 1.06 g/ml, and a soluble protein from the hemolymph (apolipophorin III) associates with the lipophorin particle. Administration of intermediate doses of hormone indicates that lipophorin is converted directly to the low density form; no appreciable amounts of intermediate density particles are formed.  相似文献   

6.
The activities of ecdysone oxidase (EO), 3-oxoecdysteroid 3α-reductase (3α-R), and 3-oxoecdysteroid 3β-reductase (3β-R) were determined for epidermis, hemolymph, and fat body of wandering fifth instar Manduca sexta larvae and for midguts of various developmental stages between 3 days after the last larval and 14 days after the pupal ecdysis. The larval midgut was the only organ showing substantial specific activities of EO and 3α-R, and both increased up to the seventh day after ecdysis. Hemolymph and fat body had only moderate to high 3β-R and low EO activites, and the epidermis did not contain significant activity of any of the enzymes. On the ninth day after the last larval ecdysis the larval midgut epithelium was replaced by a new pupal midgut epithelium. After this event only 3β-R was restored to high activities, whereas EO and 3α-R showed only low to marginal activities. It is concluded that only the larval midgut has a role in the inactivation of ecdysteroids by 3-epimerization. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    7.
    A hemolymph lipid transfer protein (LTP) was isolated from the tobacco hornworm, Manduca sexta. LTP catalyzes net lipid transfer between isolated hemolymph lipoproteins in vitro. An isolation procedure employing density gradient ultracentrifugation and gel permeation chromatography produced a purified protein. LTP is a very high density lipoprotein with a particle Mr greater than 500,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that LTP is comprised of two apoproteins: apoLTP-I (Mr approximately 320,000) and apoLTP-II (Mr approximately 85,000). LTP may have a physiological role in altering the lipid content and composition of the major hemolymph lipoprotein, lipophorin.  相似文献   

    8.
    The endoparasitic wasp Cotesia congregata develops in the hemocoel of larval stages of the tobacco hornworm, Manduca sexta. Teratocytes were released from the serosal membrane during hatching of the first instar wasp larva at 2-3days after oviposition; about 160 cells were released per embryo. The cells increased in diameter from about 10 to >200&mgr;m prior to wasp emergence. Nascent microvilli, visible on the cell surface before hatching of the first instar larva, rapidly increased in length and number following release of the cells. Irrespective of when the wasps were due to emerge, or how many parasitoids were present in the host, dramatic cytological changes occurred in the cells during the last instar of the host's development. Many of these morphological and ultrastructural changes were symptomatic of the cytological features of degenerating or apoptotic cells, and large numbers of vesicles appeared interspersed amongst the microvilli. The nucleus developed extensive dentritic ramifications, and the chromatin condensed in large clumps on the inner nuclear membrane. At the final stages of the wasps' development, the nucleus occupied the bulk of the interior of the cell. The cytoplasm gradually grew dramatically more electronluscent and less granular, as did the nucleoplasm, which is also indicative of impending cell death. Following the parasites' emergence, many of the cells underwent extensive blebbing of the cell surface. Teratocytes within a host appeared heterogeneous with respect to their morphological appearance. Analysis of the proteins secreted by teratocytes in vitro following labelling with (35)S-methionine showed that many (>30) polypeptides were synthesized de novo and secreted by the cells; some proteins were clearly targeted for secretion. We presume that the cells likely secrete a large number of proteins in vivo as well as in vitro.  相似文献   

    9.
    Analyses of the hexane washes of antennae, forelegs and whole bodies of Helicoverpa zea, Heliothis virescens, and Manduca sexta revealed notable differences in the components of the cuticular coatings of each species. Most striking were the differences between the cuticular coatings of male and female antennae of both H. zea and H. virescens. Novel esters of short-chain acids (C2-C4) and long-chain secondary alcohols (C25-C32) were identified in the hexane washes of the male antenna and forelegs of H. zea and H. virescens. These compounds were found in only small amounts or were completely absent on the female antennae of both species. In H. zea, butyrates of 7- and 8-pentacosanol and 8- and 9-heptacosanol were found, whereas, in the foreleg extracts of H. virescens, acetates and propionates were detected in addition to butyrates. While cholesterol is a major component of antennal washes (10-15%), only traces were found in the foreleg extracts. Although the composition of the cuticular coating of M. sexta differed greatly from that of the other two species, the extractable coatings of the antennae of male and female M. sexta were nearly identical.  相似文献   

    10.
    The technique of steroid hormone autoradiography has been used to study the cellular distribution of ecdysteroid binding sites in the ventral nervous system of the tobacco hornworm moth, Manduca sexta. The ligand was 26-[125I]iodoponasterone. Tissue was examined from the subesophageal ganglia, thoracic ganglia, and abdominal ganglia of larvae at two times during the larval-pupal transient: the 2nd day of wandering and the prepupal stage. The patterns of neuronal binding seen were compared with those found in earlier autoradiographic studies of hormone binding in tissue sampled on the 1st day of wandering, in the pharate adult, and in the 4-day-old moth (Fahrbach and Truman, '89). The pattern of binding was reproducible but dependent upon developmental stage: whereas only a subset of neurons exhibited nuclear accumulation of radiolabeled ecdysteroids on the 1st day of wandering, less than 24 hours later nearly every neuron in the ventral nervous system was labeled. A limited pattern of binding, however, was seen again in the prepupal nervous system. Thus, the insect nervous system is able to use a single hormone both as a general cue for metamorphic development and as a single targeted to stage-specific subsets of neurons by alternating periods of ubiquitous expression of receptor with periods during which the capacity to bind the steroid hormone is highly restricted.  相似文献   

    11.
    The heterotrimeric G proteins are a conserved family of guanyl nucleotide-binding proteins that appear in all eukaryotic cells but whose developmental functions are largely unknown. We have examined the developmental expression of representative G proteins in the developing nervous system of the moth Manduca sexta. Using affinity-purified antisera against different Gα subunits, we found that each of the G proteins exhibited distinctive patterns of expression within the developing central nervous system (CNS), and that these patterns underwent progressive phases of spatial and temporal regulation that corresponded to specific aspects of neuronal differentiation. Several of the G proteins examined (including Gsα and Goα) were expressed in an apparently ubiquitous manner in all neurons, but other proteins (including Giα) were ultimately confined to a more restricted subset of cells in the mature CNS. Although most of the G proteins examined could be detected within the central ganglia, only Goα-related proteins were seen in the developing peripheral nerves; manipulations of G protein activity in cultured embryos suggested that this class of G protein may contribute to the regulation of neuronal motility during axonal outgrowth. Goα-related protein were also localized to the developing axons and terminals of the developing adult limb during metamorphosis. These intracellular signaling molecules may, therefore, play similar developmental roles in both the embryonic and postembryonic nervous system. © 1995 John Wiley & Sons, Inc.  相似文献   

    12.
    NMR and electrospray ionization tandem mass spectrometry were used to show for the first time the presence of sphingomyelins in extracts of the tobacco hornworm Manduca sexta (Lepidoptera). The sphingosine in the ceramide was identified as tetradecasphing-4-enine, and the fatty acids were C18:0, C20:0, C22:0, and C24:0 (compound 1). Heterogeneity in the ceramide was observed in sphingomyelins from M. sexta. All of the sphingomyelins were associated with their doubly unsaturated sphingosine, tetradecasphing-4,6-dienine (compound 2), which contained the same set of fatty acids as compound 1 and represents a novel set of sphingomyelins not previously reported in Lepidoptera. Lipid rafts were isolated from brains of M. sexta, and the association of these novel sphingomyelins with rafts was confirmed. The existence of the additional double bond was also observed in ceramide and ceramide phosphoethanolamine isolated from M. sexta. The levels of the doubly unsaturated ceramide showed modest changes during metamorphosis of M. sexta. These results suggest that Manduca sphingomyelins may participate in the formation of lipid rafts, in keeping with their function in vertebrates.  相似文献   

    13.
    Summary At the culmination of each molt, the larval tobacco hornworm exhibits a pre-ecdysis behavior prior to shedding its old cuticle at ecdysis. Both pre-ecdysis and ecdysis behaviors are triggered by the peptide, eclosion hormone (EH). Pre-ecdysis behavior consists of rhythmic abdominal compressions that loosen the old larval cuticle. This behavior is robust at larval molts, but at the larval-pupal molt the only comparable behavior consists of rhythmic dorso-ventral flexions of the anterior body. These flexions appear to be an attenuated version of the larval pre-ecdysis behavior because (1) they show the same EH dependence, and (2) the motor patterns recorded from EH treated, deafferented larval and pupal preparations are similar except that the pupal pattern is much weaker. Both patterns are characterized by rhythmic, synaptically-driven bursts of action potentials in motoneurons MN-2 and MN-3, which occur synchronously in all segments. However, the synaptic drive to the motoneurons and their resultant levels of activity are reduced during the pupal pre-ecdysis motor pattern, especially in posterior abdominal segments. Although the dendritic arbors of both motoneurons regress somewhat during the larval-pupal transformation, this does not appear to be the primary source of diminished synaptic drive because regression is greatest in the segments in which synaptic inputs remain the strongest. The developmental weakening of the pre-ecdysis motor pattern thus may be due to changes at the interneuronal level.Abbreviations A2, A3... abdominal segments 2, 3, etc. - ALE anterior lateral external muscle - day L3 third day of the 5th larval instar - day P0 the day of pupal ecdysis - DN a anterior branch of the dorsal nerve - EH eclosion hormone - HPLC high performance liquid chromatography - TP tergopleural muscle  相似文献   

    14.
    Developmental changes in synaptic membrane lipid composition and fluidity   总被引:5,自引:0,他引:5  
    Synaptic membrane enriched fractions were prepared from 7 and 14 day and adult cortical nerve endings. (a) The levels of synaptic membrane phosphatidylcholine decrease 19% during development while the levels of ethanolamine phosphoglycerides increase 21%. (b) On day 7, desmosterol accounts for 33% of the total membrane sterols. With maturity, the desmosterol disappears and the molar sterol/lipid P ratio increases 56%. (c) The fatty acid composition of the membranes change during development. 16:0 decreases 36% while 18:1 increases 49%. 16:1, a minor component of adult membranes, is found in significant quantities in pup membranes. 22:6 (n-3) increases 34% during development while 22:5 (n-6) decreases 59%. (d) The microviscosity of synaptic membranes, as measured by the fluorescence depolarization technique, increases during development. This effect is observed in both intact membranes and bilayers prepared from lipid extracts of the membrane.  相似文献   

    15.
    Fasting or starvation of 1(st)- and 2(nd)-day fifth instar Manduca sexta larvae leads to rapid activation of fat body glycogen phosphorylase. Under feeding conditions, 21-29% of the phosphorylase was found in the active form. However, after only one hour of starvation, the active form increased to 55-65%. In larvae on the 3(rd)-day there was a slower increase in the activation, requiring three hours of starvation to reach a maximum of 60-65%. No activation was observed in 4(th)-day larvae after three hours of starvation. When 1(st)- or 2(nd)-day larvae were decapitated, the time-course of activation of glycogen phosphorylase was very similar to that observed in intact insects. However, activation of glycogen phosphorylase following decapitation was only observed in 1(st)- and 2(nd)-day larvae. In 2(nd)-day larvae, octopamine promoted activation of glycogen phosphorylase and 100-pmol of octopamine promoted maximum activation. Higher amounts of injected octopamine caused a decrease in activation. The injection of 100 pmol of octopamine caused a 50-55% activation of phosphorylase within 30 minutes. The simultaneous injection of the alpha-adrenergic receptor antagonist phentolamine with octopamine blocked the octopamine effect in 1(st)- and 2(nd)-day feeding larvae. However, the activation of glycogen phosphorylase observed in ligated/decapitated larvae on the 1(st)- and 2(nd)-day was not abolished by injection of phentolamine. All of these data suggest that factors other than adipokinetic hormone and octopamine may be involved in the activation of glycogen phosphorylase during fasting or starvation in the early part of the fifth larval stage of M. sexta.  相似文献   

    16.
    Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components.  相似文献   

    17.
    Summary Adult Manduca sexta feed very irregularly in the laboratory, and many adult males never feed. Feeding adults live longer and feeding females lay many more eggs; however, in both feeding (sugar water) and starving adults a decrease of metabolic reserves is observed. Carbohydrates disappear from hemolymph and from fat body. Fat body lipid also decreases, while hemolymph lipid concentration increases strongly in starving adults. The activity of fat body glycogen phosphorylase increases strongly in starving adult M. sexta. The activity of glycogen phosphorylase is correlated inversely with hemolymph sugar concentration. Injected trehalose inactivates glycogen phosphorylase within 2 h, and lowers the hemolymph lipid level within 6 h. In starving adult M. sexta, neither the activation of glycogen phosphorylase nor the increase of hemolymph lipid concentration depends on adipokinetic hormone, since cardiacectomy does not prevent the activation of glycogen phosphorylase nor the increase of hemolymph lipid level.Abbreviations AKH adipokinetic hormone - EDTA ethylenediamine tetraacetate Present address: Department of Biochemistry and Center for Insect Science, The University of Arizona, Tucson, AZ 85721, USA  相似文献   

    18.
    We have discovered a new type of haemocyte in the larval stage of the tobacco hornworm moth Manduca sexta that has extreme phagocytic ability; each cell can engulf up to 500 bacteria. This level of phagocytosis may be unprecedented among animal cells. Although these hyperphagocytic cells (HP) only represent about 1% of the circulating haemocytes, they are responsible for sequestering the majority of the bacteria by circulating haemocytes when non-pathogenic, heat-killed Escherichia coli are injected into the haemolymph. Extreme phagocytosis by HP is not limited to Gram-negative bacteria since heat-killed Staphylococcus aureus as well as positively and negatively charged microspheres are also highly phagocytosed. Evidence is presented to show that phagocytosis by HP is involved in the early stages of nodule formation in infected insects. In addition, HP are also present in non-infected insects, characterised by their distinctive spreading morphology, which becomes impaired following hyperphagocytosis of bacteria. This is the first time that a dedicated "professional" phagocytic class of haemocyte has been reported for an invertebrate. The importance of these specialised cell types in the M. sexta immune response and their role in nodule formation is discussed.  相似文献   

    19.
    The prothoracicotropic hormone (PTTH), which stimulates ecdysteroid synthesis in the prothoracic glands, is produced, in the dorso-lateral protocerebrum of Manduca sexta, by paired peptidergic neurons, the lateral neurosecretory cell group III (L-NSC III). Our study revealed ultrastructural features of L-NSC III, identified by immunogold labeling, and compared developing and diapause states. In developing and early-diapause pupae, L-NSC III soma ultrastructure is similar and is characterized by numerous clusters of neurosecretory granules (NSG) and an extensive trophospongium formed by satellite-glial cells. However, as diapause progresses, the ultrastructure changes, with the NSG becoming concentrated into large clusters separated by highly organized rough endoplasmic reticulum. Most conspicuous is a substantial reduction in the number of Golgi complexes and the glial trophospongium, and the presence of stacked plasma membrane separating the glia and neuron somata. The deep-diapause soma also has abundant glycogen deposits and autophagic vacuoles. With diapause termination, this morphology reverts to the nondiapause ultrastructure within three days, i.e. just before PTTH release that evokes development to the adult. During PTTH release the abundance of NSG in the soma does not change, suggesting that NSG depletion in the perikarya is not a marker for neurosecretion by the L-NSC III.  相似文献   

    20.
    In several insect species, serum lysozyme and antibacterial peptide concentration increases after injection of bacteria and other foreign substances. The purpose of this study was to characterize the specificity of this induction in the tobacco hornworm, Manduca sexta. By 48 h after injection of killed bacteria, lysozyme activity was approximately tenfold greater than in untreated insects. This maximal response was observed after injection of every bacterial species tested and after injection of purified cell walls of Micrococcus luteus. A variety of acellular particles, soluble molecules, and bacterial cell wall components were either poor lysozyme inducers or elicited no change in lysozyme concentration. The polysaccharide zymosan from yeast cell walls was a moderate lysozyme inducer. Peptidoglycan from M. luteus cell walls was found to induce lysozyme to a level as great or greater than whole cell walls. Small fragments of peptidoglycan generated by hen egg white lysozyme digestion were isolated, partially characterized, and shown to be good inducers of lysozyme as well as other antibacterial peptides. It appears that peptidoglycan provides a signal that initiates antibacterial responses in the insect.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号