首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day?×?3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-? (IFN-?), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (?/?) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (?/?) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (?/?) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.  相似文献   

2.
3.
Chondrocyte apoptosis is mainly responsible for the progressive degeneration of cartilage in osteoarthritis (OA). Interleukin-1beta (IL-1β) was widely used as a modulating and chondrocyte apoptosis-inducing agent. Nicotine is able to confer resistance to apoptosis and promote cell survival in some cell lines, but its regulatory mechanism is ambiguous. We aimed to investigate the effect of nicotine on IL-1β-induced chondrocyte apoptosis and the mechanism underlying how nicotine antagonizes IL-1β-induced apoptosis of rat chondrocytes. Chondrocytes isolated from newborn rat joints were exposed to IL-1β. The cell viability was analyzed by the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, and the apoptotic cells were counted with DAPI staining. The levels of Akt, phosphorylated-Akt (p-Akt) and downstream protein targets of Akt were detected by western blotting. The results showed that nicotine neutralized the effect of IL-1β on chondrocytes by activating PI3K/Akt signaling pathways, including the PI3K/Akt/Bcl-2 pathway, to block IL-1β-induced cell apoptosis and the PI3K/Akt/p70S6K (p70S6 kinase)/S6 pathway for promoting protein synthesis, modulating its downstream effectors such as TIMP-1 and MMP-13. Activation of the PI3K/Akt pathway is, in part, required for the effect of nicotine on IL-1β-induced chondrocyte apoptosis in a rat model of osteoarthritis.  相似文献   

4.
Interleukin-7 (IL-7) is a cytokine that is required for T cell development and survival. The anti-apoptotic function of IL-7 is partly through induction of Bcl-2 synthesis and cytosolic retention of Bax. Here we show that the Bcl-2 homology 3 domain-only protein, Bad, is involved in cell death following IL-7 withdrawal from D1 cells, an IL-7-dependent murine thymocyte cell line. IL-7 stimulation resulted in the inactivation of Bad by phosphorylation at Ser-112, -136, and -155. The phosphoinositide 3-kinase (PI3K)/Akt pathway has been implicated previously in Bad phosphorylation. In response to IL-7, the PI3K/Akt pathway induced phosphorylation at Ser-136 and -155, but Ser-112 was partly independent of the PI3K/Akt pathway, indicating an as yet unknown pathway in this response. Following IL-7 withdrawal, dephosphorylated Bad translocated from cytosol to mitochondria, bound to Bcl-2, and accelerated cell death. Thus, the inactivation of Bad contributes to the survival function of IL-7.  相似文献   

5.
6.
Molecular mechanisms of acute lung injury (ALI) are poorly defined. Our previous study demonstrated that recombinant angiopoietin-1 (Ang1) can protect against oleic acid (OA) induced ALI at an early stage. The purpose of this study was to elucidate whether vascular endothelial growth factor (VEGF), Bcl-2, and Bad, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) play any role in the protective mechanism of recombinant Ang1 in OA-induced ALI. All BALB/C mice were administered a single dose of OA to induce lung injury. Lungs, bronchoalveolar lavage fluid (BALF), and serum were harvested at certain time points. The expression of VEGF, Bcl-2, Bad, PI3K/Akt, and the histological changes in the lung, and the levels of VEGF, IL-6, and IL-10 in serum and BALF were examined. A second cohort of mice was followed for survival for 7 days. We observed increased expression of VEGF in BALF and serum and reduced expression of VEGF in lung tissue. Recombinant Ang1 treatment, however, up-regulated VEGF expression and p-Akt/Akt in lung tissue but down-regulated VEGF expression in BALF and serum. OA led to a decrease of anti-apoptotic marker Bcl-2 and a marked increase of pro-apoptotic marker Bad. Compared with the ALI group, in the recombinant Ang1 treated group, Bcl-2 expression was restored, and Bad expression was clearly attenuated. In addition, recombinant Ang1 attenuated the lung pathological changes and improved the survival of mice. These findings suggest that recombinant Ang1 may be a promising potential treatment for ALI. It seems that VEGF is mediated by PI3K/Akt pathway which is required for Ang1-mediated protection of lung injury. Activation of Akt stimulates expression of Bcl-2 and inhibits the expression of Bad, thus inhibiting the execution of apoptosis.  相似文献   

7.
Zhu  Xiaojuan  Liu  Shichao  Cao  Zhijiao  Yang  Lei  Lu  Fang  Li  Yulan  Hu  Lili  Bai  Xiaoliang 《Molecular and cellular biochemistry》2021,476(11):3889-3897

Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.

  相似文献   

8.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

9.
Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), a pathological hallmark of rheumatoid arthritis (RA), exhibit the characteristics of tumor cells. The extracts of Cirsium japonicum var. ussuriense have been shown to possess antitumor and anti-inflammatory activities. Our study aimed to investigate the effects of pectolinarin, a flavonoid compound isolated from C. japonicum var. ussuriense, on RA. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Apoptosis was determined by flow cytometry analysis and Western blot analysis of Bax and Bcl-2 levels. Inflammation was assessed by detecting the expressions and secretion of interleukin (IL)-6 and IL-8 using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) was also measured. The effects of pectolinarin on the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway were examined by Western blot. We found that pectolinarin significantly inhibited cell viability at 24 and 48 hours in a dose-dependently manner in RA-FLSs. Pectolinarin reduced the apoptotic rate, increased Bax level, and decreased Bcl-2 level in RA-FLSs. Pectolinarin inhibited the messenger RNA expression and secretion of IL-6 and IL-8, as well as the production of PGE2 and NO in RA-FLSs. Furthermore, pectolinarin inactivated the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway in RA-FLSs. Activation of the PI3K/Akt pathway by 740Y-P impaired the effects of pectolinarin on cell viability, apoptosis, and inflammation in RA-FLSs. In conclusion, pectolinarin suppressed cell proliferation and inflammatory response and induced apoptosis in RA-FLSs via inactivation of the PI3K/Akt pathway.  相似文献   

10.
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+-induced decreased cell viability and ferroptosis. MPP+-reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+-induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+-induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.  相似文献   

11.
The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K–Akt-dependent GSK3β phosphorylation and β-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.  相似文献   

12.
13.
Pyrroloquinoline quinone (PQQ) has been shown to protect primary cultured hippocampal neurons from glutamate-induced cell apoptosis by scavenging reactive oxygen species (ROS) and activating phosphatidylinositol-3-kinase (PI3K)/Akt signaling. We investigated the downstream pathways of PI3K/Akt involved in PQQ protection of glutamate-injured hippocampal neurons. Western blot analysis indicated that PQQ treatment following glutamate stimulation triggers phosphorylation of glycogen synthase kinase 3β, accompanied by maintenance of Akt activation. Immunostaining and quantitative RT-PCR revealed that PQQ treatment promotes nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), and up-regulates mRNA expression of Nrf2 and the antioxidant enzyme genes, heme oxygenase-1 and glutamate cysteine ligase catalytic in glutamate-injured hippocampal neurons; this is a process dependent on the PI3K/Akt pathway, as evidenced by blocking experiments with PI3K inhibitors. In addition, increased ROS production and decreased glutathione levels in glutamate-injured hippocampal neurons were found to be reduced by PQQ treatment. Collectively, our findings suggest that PQQ exerts neuroprotective activity, possibly through PI3K/Akt-dependent activation of Nrf2 and up-regulation of antioxidant genes. However, the ability of PQQ to scavenge ROS was not totally regulated by PI3K/Akt signaling; possibly it is governed by other mechanisms.  相似文献   

14.
There is accumulating evidence that the complement activation product, C5a, can orchestrate cellular immune functions. IL-27(p28/EBI3) is an emerging key player essential for regulating inflammatory responses and T cells. In this article, we report that C5a robustly suppressed IL-27(p28) gene expression and release in peritoneal macrophages. These cells from C57BL/6J mice abundantly produced IL-27(p28) after engagement of either the TLR3 (polyinosinic-polycytidylic acid) or TLR4 (LPS) receptor. Genetic deficiency of either TLR4 or LBP completely incapacitated the ability of macrophages to secrete IL-27(p28) in response to LPS. IL-27(p28)-producing macrophages also expressed the C5aR receptor, thus displaying an IL-27(p28)(+)F4/80(+)C5aR(+) phenotype. C5a suppressed IL-27(p28) in LPS-stimulated macrophages via interactions with the C5aR receptor rather than the C5L2 receptor. After endotoxemia, C5aR(-/-) mice displayed higher plasma levels of IL-27(p28) compared with C57BL/6J mice. C5a did not affect the release of IL-27(p28) or the frequency of IL-27(p28)(+)F4/80(+) macrophages after engagement of TLR3. Mechanistically, LPS activated both the NF-κB and the PI3K/Akt pathways, whereas C5a activated only the PI3K/Akt pathway. Engagement of PI3K/Akt was inhibitory for IL-27(p28) production, because PI3K/Akt pharmacologic blockade resulted in increased amounts of IL-27(p28) and reversed the suppressive effects of C5a. Blockade of PI3K/Akt in endotoxemic C57BL/6J mice resulted in higher generation of IL-27(p28). In contrast, the PI3K/Akt pathway was not involved in TLR3-mediated release of IL-27(p28). These data provide new evidence about how complement activation may selectively interfere with production of T cell regulatory cytokines by APCs in the varying contexts of either bacterial (TLR4 pathway) or viral (TLR3 pathway) infection.  相似文献   

15.
本研究旨在研究B型钠尿肽(brain natriuretic peptide, BNP)对异丙肾上腺素(isoproterenol, ISO)诱导的急性心肌缺血(acute myocardial ischemia, AMI)相关损伤的保护作用。将大鼠随机分作5组:对照组、ISO处理组、ISO+普萘洛尔(5 mg/kg)处理组、ISO+BNP (5 mg/kg)和ISO+BNP (10 mg/kg)处理组。再将4个给药组中的大鼠连续2 d皮下注射ISO。通过心电图(ECG)记录ST段数据;ELISA检测血清中肌酸激酶(CK)、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)、丙二醛(MDA)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6 (IL-6)和IL-1β的表达水平;接着使用Western blotting对Bax-2、Bcl-2、PI3K、Akt、GSK-3β、MDA5和SOD1蛋白表达水平进行检测,并测定PI3K、Akt和GSK-3β的磷酸化。实验结果显示,BNP (5 mg/kg, 10 mg/kg)可降低血清中MDA和CK的表达水平以及SOD和LDH的蛋白活性;经BNP预处理显著降低了促炎因子IL-1β、IL-6和TNF-α的表达水平;同时BNP也降低了ST段抬高。此外,BNP改善了ISO诱导的大鼠中SOD1、MDA5、Bax-2、Bcl-2、p-PI3K、p-Akt和p-GSK-3β的表达。综上所述,通过调节PI3K/Akt/GSK-3β信号传导途径,BNP保护大鼠免受AMI损伤。  相似文献   

16.
In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-β (TGF-β). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-β-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-β-induced apoptosis.  相似文献   

17.
We have previously shown that nerve growth factor (NGF)-induced activation of nuclear factor-kappaB increased neuronal expression of Bcl-xL, an anti-apoptotic Bcl-2 family protein. In the present study we determined the role of the p75 neurotrophin receptor in constitutive and NGF-induced survival signalling. Treatment of rat pheochromocytoma (PC12) cells with a blocking anti-rat p75 antibody or inhibition of p75 expression by antisense oligonucleotides reduced constitutive and NGF-induced bcl-xL expression. Treatment with the blocking anti-p75 antibody also inhibited NGF-induced activation of the survival kinase Akt. Inhibition of phosphatidylinositol-3-kinase (PI3 kinase) activity or overexpression of a dominant-negative mutant of Akt kinase inhibited NGF-induced nuclear factor-kappaB activation. Activation of Akt kinase by NGF was also observed in PC12nnr5 cells and cultured rat hippocampal neurones which both lack significant TrkA expression. Treatment of hippocampal neurones with the blocking anti-p75 antibody inhibited constitutive and NGF-induced Bcl-xL expression, activation of Akt, and blocked the protective effect of NGF against excitotoxic and apoptotic injury. Our data suggest that the p75 neurotrophin receptor mediates constitutive and NGF-induced survival signalling in PC12 cells and hippocampal neurones, and that these effects are mediated via the PI3-kinase pathway.  相似文献   

18.
Although aging is shown to be associated with decreased apoptosis and increased survival of cells in the colonic mucosa of Fischer 344 rats, the regulatory mechanisms are poorly understood. The current investigation examines the involvement of phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway in mediating the events of colonic mucosal cell survival during aging. We have observed that aging is associated with activation of PI3K/Akt signaling, as evidenced by the higher levels of phosphorylated forms of p85, the regulatory subunit of PI3K and of Akt in the proximal and distal colonic mucosa, of aged (21-23 mo) than in young (4-7 mo) rats. These increases are accompanied by a concomitant rise in phosphorylation of proapoptotic protein Bad, which is sequestered by the 14-3-3 family of proteins following phosphorylation by Akt, resulting in a reduction in nonphosphorylated Bad. The amount of antiapoptotic Bcl-xL bound to nonphosporylated Bad in the colonic mucosa is found to be substantially lower in aged than in young rats, resulting in a marked rise in the unbound/free form of Bcl-xL in the aging colon. The age-related activation of PI3K and the reduction in caspase-3 activity could be reversed by wortmannin, a specific inhibitor of PI3K. Increased levels of Bcl-xL and phosphorylated forms of Akt and Bad and reduction in caspase-3 activity were observed throughout the entire length of the colonic crypt of aged rats. We conclude that the constitutive activation of the PI3K/Akt-signaling pathway is partly responsible for the age-related increase in colonic mucosal cell survival. This is evident throughout the entire length of the colonic crypt.  相似文献   

19.
20.
Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号