首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are several mechanisms by which the central nervous system participates in the neural and humoral alterations associated with various forms of experimental hypertension. Structures in forebrain with multiple integrative roles in neuroendocrine control of the circulation are involved. Tissue surrounding the anteroventral region of the third cerebral ventricle (AV3V region) is involved physiologically in thirst, sodium homeostasis, osmoreception, secretion of vasopressin and natriuretic factor and sympathetic discharge to blood vessels. Destruction of this tissue prevents or reverses many forms of hypertension. In genetically based spontaneous hypertension, limbic structures such as the central nucleus of the amygdala rather than the AV3V region are the necessary neuroanatomic substrate. Recent evidence suggests that a circumventricular organ in brain stem, the area postrema, is also involved in the mediation of several forms of experimental hypertension. In renin- and nonrenin-dependent forms of renal hypertension, two major factors activate central mechanisms. First, direct central actions of angiotensin, acting through receptors in the subfornical organ and organum vasculosum of the lamina terminalis, increase sympathetic discharge and secretion of vasopressin through mechanisms integrated at the level of the AV3V region. Second, sensory systems originating in the kidney can activate increased sympathetic discharge through complex projection pathways involving forebrain systems. Mineralocorticoid hypertension appears to involve enhanced secretion of vasopressin and central vasopressinergic mechanisms also dependent on the AV3V region. Reciprocal connections between key central areas involved in control of arterial pressure provide the neuroanatomical basis for central nervous system participation in hypertension.  相似文献   

2.
Although a great deal has been learned about the neural basis for stimulation-produced analgesia, it is evident that the 'analgesia systems' are much more complex than was initially thought. Part of the complexity derives from the fact that a number of different pathways, using several different neurotransmitters, can affect nociceptive transmission. Further complexity stems from evidence that nociceptive transmission can be modulated both at a spinal cord level and at higher levels of the nociceptive projection system, such as the thalamus. Hopefully, a greater understanding of the 'analgesia systems' will lead to explanations for a number of puzzling aspects of pain and perhaps to improved therapy.  相似文献   

3.
This paper provides a review of recent developments in the field of neural and humoral control of the cardiovascular system mediated through the central nervous system. The areas covered include central mechanism of baroreceptor reflex control, sites of origin of tonic vasomotor activity, interactions between forebrain and brain stem, central actions of humoral factors, the role of visceral and somatic afferents, and the potential for central selectivity of vasomotor control.  相似文献   

4.
5.
6.
The role of the B?tzinger complex (B?tC) and the pre-B?tzinger complex (pre-B?tC) in the genesis of the breathing pattern was investigated in anesthetized, vagotomized, paralysed and artificially ventilated rabbits making use of bilateral microinjections of kainic acid (KA) and excitatory amino acid (EAA) receptor antagonists. KA microinjections into either the B?tC or the pre-B?tC transiently eliminated respiratory rhythmicity in the presence of tonic phrenic activity (tonic apnea). Rhythmic activity resumed as low-amplitude, high-frequency irregular oscillations, superimposed on tonic inspiratory activity and displayed a progressive, although incomplete recovery. Microinjections of kynurenic acid (KYN) and D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) into the B?tC caused a pattern of breathing characterized by low-amplitude, high-frequency irregular oscillations and subsequently tonic apnea. Responses to KYN and D-AP5 in the pre-B?tC were similar, although less pronounced than those elicited by these drugs in the B?tC and never characterized by tonic apnea. Microinjections of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) into the B?tC and the pre-B?tC induced much less intense responses mainly consisting of increases in respiratory frequency. The results show that the investigated medullary regions play a prominent role in the genesis of the normal pattern of breathing through the endogenous activation of EAA receptors.  相似文献   

7.
Neurologic complications of infective endocarditis, risk factors for mortality and neurologic sequellae are briefly reviewed.  相似文献   

8.
9.
Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and parasympathetic withdrawal. This article describes the relation between psychological distress and autonomic nervous system function, with a focus on subsequent adverse cardiovascular outcomes. The role of the central nervous system in these associations is addressed, and a systematic review is presented of studies examining the association between stress-induced central nervous system responses measured by neuroimaging techniques and autonomic nervous system activation. Results of the systematic review indicate that the primary brain areas involved in the autonomic component of the brain-heart association are the insula, medial prefrontal cortex, and cerebellum (based on 121 participants across three studies that fitted the inclusion criteria). Other areas involved in stress-induced autonomic modulation are the (anterior) cingulate cortex, parietal cortex, somatomotor cortex/precentral gyrus, and temporal cortex. The interaction between central and autonomic nervous system responses may have implications for further investigations of the brain-heart associations and mechanisms by which acute and chronic psychological distress increase the risk of myocardial infarction, cardiac arrhythmias, and sudden cardiac death.  相似文献   

10.
The hypothesis is examined that the living mammal generates and uses electromagnetic waves in the lower microwave frequency region as an integral part of the functioning of central and peripheral nervous systems. Analysis of the potential energy of a protein integral to the neural membrane compared to that of an extracellular positive ion yields major known features of action potential generation, and identification of the integral protein as a microwave emitter and absorber by changes in rotational energy state. Prolate spheroidal analysis of the adult human brain/skull cavity shows capability to support modes in the range 200 MHz to 3 GHz; spatial mode properties correspond to gross anatomy and neuromorphology of the brain. Phase-lock loop interaction between lower microwave modes and action potential conduction results in pulse microwave/action potential generation observable by EEG instrumentation as brain waves; alpha waves occur if the corpus callosum is the major neural tract involved. Spatially consistent Lorentz forces of standing microwaves provide physical basis for correspondence of spatial properties of microwave modes with brain anatomy, and for the formation of myelin sheath and the nodes of Ranvier on larger neurons.  相似文献   

11.
12.
Response of rat exocrine pancreas to high-fat and high-carbohydrate diets   总被引:2,自引:0,他引:2  
Intake of diets with high fat content is a risk factor for acute pancreatitis and pancreatic cancer. The underlying mechanisms leading to the development of these diseases due to high fat intake are currently unknown. The current study was designed in rats to determine the physiologic and pathological consequences of a highfat diet that contained excess amounts of cottonseed oil or a high-carbohydrate diet that contained high amounts of sucrose on the exocrine pancreas. Rats were maintained on the diets for 4 weeks, and a cannula was inserted into the right jugular vein and one into the pancreatic duct for collection of pancreatic juice. Volume of the pancreatic juice and concentrations of amylase, lipase, and trypsinogen in the pancreatic juice were measured before and after infusions of CCK-8. Results showed that basal and CCK-stimulated pancreatic outputs of volume, amylase and lipase but not trypsinogen, were significantly elevated in intact rats given a high-fat diet when compared with rats given a high-carbohydrate diet. Forty-eight hours later, rats were sacrificed, and parts of the pancreas were removed for isolation of pancreatic acinar cells and for histopathologic studies. Pancreatic acini isolated from rats on a high-fat diet showed significantly lower basal and CCK-stimulated amylase release when compared with those on a high-carbohydrate diet. Histology of the pancreas of rats on a high-carbohydrate diet appeared normal; however, the pancreas of rats on high-fat diet showed significant alterations in exocrine pancreas. These results showed abnormalities in the exocrine pancreas of rats on a high-fat diet, that were not found in rats on a high-carbohydrate diet; further, they support the contention that a high-fat diet has a deleterious effect on the pancreas.  相似文献   

13.
14.
15.
16.
The white adipose tissue was initially largely known only as an energy storage tissue. It is now well recognized that white adipose tissue is a major endocrine and secretory organ, which releases a wide range of protein signals and factors termed adipokines. The regulation of adipocyte metabolism is an important factor for the understanding of obesity, and some mechanisms are still unknown. Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the central nervous system. There is substantial evidence demonstrating that the central nervous system also directly regulates adipocyte metabolism. In this review, we discuss the central actions of some peptides with an important role in energy balance regulation on adipocyte metabolism and the physiological relevance of these actions.  相似文献   

17.
Disagreement exists within the scientific community with regards to the level of competition for feed between sheep and kangaroos in the Australian rangelands. The greatest challenge to solving this debate is finding effective means of determining the composition of the diets of these potential grazing competitors. An option is to adopt a non-invasive approach that combines faecal collection and molecular techniques that focus on faecal DNA as the primary source of dietary information. As proof-of-concept, we show that a DNA reference data bank on plant species can be established. This DNA reference data bank was then used as a library to identify plant species in kangaroo faeces collected in the southern rangelands of Western Australia. To enhance the method development and to begin the investigation of competitive grazing between sheep and kangaroos, 16 plant species known to be palatable to sheep were initially targeted for collection. To ensure that only plant sequences were studied, PCR amplification was performed using a universal primer pair previously shown to be specific to the chloroplast transfer RNA leucine (trnL) UAA gene intron. Overall, genus-specific, single and differently sized amplicons were reliably and reproducibly generated; enabling the differentiation of reference plants by PCR product length heterogeneity. However, there were a few plants that could not be clearly differentiated on the basis of size alone. This prompted the adoption of a post-PCR step that enabled further differentiation according to base sequence variation. Restriction endonucleases make sequence-specific cleavages on DNA to produce discrete and reproducible fragments having unique sizes and base compositions. Their availability, affordability and simplicity-of-use put restriction enzyme sequence (RES) profiling as a logical post-PCR step for confirming plant species identity. We demonstrate that PCR-RES profiling of plant and faecal matter is useful for the identification of plants included in the diet of kangaroos. The limitations, potential and the opportunities created for researchers interested in investigating the diet of competing herbivores in the rangelands are discussed.  相似文献   

18.
Y Tache  M Gunion 《Life sciences》1985,37(2):115-123
Bombesin or gastrin releasing peptide injected into the lateral, third, or fourth ventricle, or into the cisterna magna, inhibited gastric acid secretion induced by a wide variety of gastric acid stimulants in several animal models. Studies of bombesin microinfusion into specific hypothalamic nuclei of intact rats, or injection into the cisterna magna of midbrain transected rats, indicated that the peptide can trigger inhibition of gastric acid secretion from both forebrain and hindbrain structures. The neural pathways mediating bombesin action required the integrity of the cervical spinal cord; the vagus did not play an important role. Spantide, a substance P and bombesin receptor antagonist, was not useful in studying the physiological role of bombesin. This was due both to its inability to reverse the central action of bombesin on gastric secretion, and to its in vivo toxicity.  相似文献   

19.
PURPOSE OF REVIEW: Based on interim results from an ongoing study, we have reported that consumption of a high-fructose diet, but not a high-glucose diet, promotes the development of three of the pathological characteristics associated with metabolic syndrome: visceral adiposity, dyslipidemia, and insulin resistance. From these results and a review of the current literature, we present two potential sequences of events by which fructose consumption may contribute to metabolic syndrome. RECENT FINDINGS: The earliest metabolic perturbation resulting from fructose consumption is postprandial hypertriglyceridemia, which may increase visceral adipose deposition. Visceral adiposity contributes to hepatic triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance by increasing the portal delivery of free fatty acids to the liver. With insulin resistance, VLDL production is upregulated and this, along with systemic free fatty acids, increase lipid delivery to muscle. It is also possible that fructose initiates hepatic insulin resistance independently of visceral adiposity and free fatty acid delivery. By providing substrate for hepatic lipogenesis, fructose may result in a direct lipid overload that leads to triglyceride accumulation, novel protein kinase C activation, and hepatic insulin resistance. SUMMARY: Our investigation and future studies of the effects of fructose consumption may help to clarify the sequence of events leading to development of metabolic syndrome.  相似文献   

20.
Several of the genes currently known to be associated, when mutated, with mental retardation, code for molecules directly involved in Rho guanosine triphosphatase (GTPase) signaling. These include PAK3, a member of the PAK protein kinase family, which are important effectors of small GTPases. In many systems, PAK kinases play crucial roles regulating complex mechanisms such as cell migration, differentiation, or survival. Their precise functions in the central nervous system remain, however, unclear. Although their activity does not seem to be required for normal brain development, several recent studies point to a possible involvement in more subtle mechanisms such as neurite outgrowth, spine morphogenesis or synapse formation, and plasticity. This article reviews this information in the light of the current knowledge available on the molecular characteristics of the different members of this family and discuss the mechanisms through which they might contribute to cognitive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号