首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.  相似文献   

2.
3.
Neurospora crassa arg-2 mRNA contains an evolutionarily conserved upstream open reading frame (uORF) encoding the Arg attenuator peptide (AAP) that confers negative translational regulation in response to Arg. We examined the regulatory role of the AAP and the RNA encoding it using an N. crassa cell-free translation system. AAPs encoded by uORFs in four fungal mRNAs each conferred negative regulation in response to Arg by causing ribosome stalling at the uORF termination codon. Deleting the AAP non-conserved N terminus did not impair regulation, but deletions extending into the conserved region eliminated it. Introducing many silent mutations into a functional AAP coding region did not eliminate regulation, but a single additional nucleotide change altering the conserved AAP sequence abolished regulation. Therefore, the conserved peptide sequence, but not the mRNA sequence, appeared responsible for regulation. AAP extension at its C terminus resulted in Arg-mediated ribosomal stalling during translational elongation within the extended region and during termination. Comparison of Arg-mediated stalling at a rare or common codon revealed more stalling at the rare codon. These data indicate that the highly evolutionarily conserved peptide core functions within the ribosome to cause stalling; translational events at a potential stall site can influence the extent of stalling there.  相似文献   

4.
5.
The ability to monitor the nascent peptide structure and to respond functionally to specific nascent peptide sequences is a fundamental property of the ribosome. An extreme manifestation of such response is nascent peptide-dependent ribosome stalling, involved in the regulation of gene expression. The molecular mechanisms of programmed translation arrest are unclear. By analyzing ribosome stalling at the regulatory cistron of the antibiotic resistance gene ermA, we uncovered a carefully orchestrated cooperation between the ribosomal exit tunnel and the A-site of the peptidyl transferase center (PTC) in halting translation. The presence of an inducing antibiotic and a specific nascent peptide in the exit tunnel abrogate the ability of the PTC to catalyze peptide bond formation with a particular subset of amino acids. The extent of the conferred A-site selectivity is modulated by the C-terminal segment of the nascent peptide, where the third-from-last residue plays a critical role.  相似文献   

6.
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural?insight into two distinct eukaryotic stalling processes.  相似文献   

7.
8.
Inducible expression of the erm erythromycin resistance genes relies on drug-dependent ribosome stalling. The molecular mechanisms underlying stalling are unknown. We used a cell-free translation system to elucidate the contribution of the nascent peptide, the drug, and the ribosome toward formation of the stalled complex during translation of the ermC leader cistron. Toe-printing mapping, selective amino acid labeling, and mutational analyses revealed the peptidyl transferase center (PTC) as the focal point of the stalling mechanism. In the ribosome exit tunnel, the C-terminal sequence of the nascent peptide, critical for stalling, is in the immediate vicinity of the universally conserved A2062 of 23S rRNA. Mutations of this nucleotide eliminate stalling. Because A2062 is located in the tunnel, it may trigger a conformational change in the PTC, responding to the presence of a specific nascent peptide. The cladinose-containing macrolide antibiotic in the tunnel positions the nascent peptide for interaction with the tunnel sensory elements.  相似文献   

9.
Translation of the upstream open reading frame (uORF) in the 5′ leader segment of the Neurospora crassa arg-2 mRNA causes reduced initiation at a downstream start codon when arginine is plentiful. Previous examination of this translational attenuation mechanism using a primer-extension inhibition (toeprint) assay in a homologous N. crassa cell-free translation system showed that arginine causes ribosomes to stall at the uORF termination codon. This stalling apparently regulates translation by preventing trailing scanning ribosomes from reaching the downstream start codon. Here we provide evidence that neither the distance between the uORF stop codon and the downstream initiation codon nor the nature of the stop codon used to terminate translation of the uORF-encoded arginine attenuator peptide (AAP) is important for regulation. Furthermore, translation of the AAP coding region regulates synthesis of the firefly luciferase polypeptide when it is fused directly at the N terminus of that polypeptide. In this case, the elongating ribosome stalls in response to Arg soon after it translates the AAP coding region. Regulation by this eukaryotic leader peptide thus appears to be exerted through a novel mechanism of cis-acting translational control.  相似文献   

10.
Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.  相似文献   

11.
The ribosome has the intrinsic capacity to monitor the sequence and structure of the nascent peptide. This fundamental property of the ribosome is often exploited in regulation of gene expression, in particular, for activation of expression of genes conferring resistance to ribosome-targeting antibiotics. Induction of expression of these genes is controlled by the programmed stalling of the ribosome at a regulatory open reading frame located upstream of the resistance cistron. Formation of the stalled translation complex depends on the presence of an antibiotic in the ribosome exit tunnel and the sequence of the nascent peptide. In this review, we summarize our current understanding of the molecular mechanisms of drug- and nascent peptide-dependent ribosome stalling.  相似文献   

12.
The Arg attenuator peptide (AAP) is an evolutionarily conserved peptide involved in Arg-specific negative translational control. It is encoded as an upstream open reading frame (uORF) in fungal mRNAs specifying the small subunit of Arg-specific carbamoyl phosphate synthetase. We examined the functions of the Saccharomyces cerevisiae CPA1 and Neurospora crassa arg-2 AAPs using translation extracts from S. cerevisiae, N. crassa, and wheat germ. Synthetic RNA containing AAP and firefly luciferase (LUC) sequences were used to program translation; analyses of LUC activity indicated that the AAPs conferred Arg-specific negative regulation in each system. The AAPs functioned either as uORFs or fused in-frame at the N terminus of LUC. Mutant AAPs lacking function in vivo did not function in vitro. Therefore, trans-acting factors conferring AAP-mediated regulation are in both fungal and plant systems. Analyses of ribosome stalling in the fungal extracts by primer extension inhibition (toeprint) assays showed that these AAPs acted similarly to stall ribosomes in the region immediately distal to the AAP coding region in response to Arg. The regulatory effect increased as the Arg concentration increased; all of the arginyl-tRNAs examined appeared maximally charged at low Arg concentrations. Therefore, AAP-mediated Arg-specific regulation appeared independent of the charging status of arginyl-tRNA.  相似文献   

13.
As nascent polypeptide chains are synthesized, they pass through a tunnel in the large ribosomal subunit. Interaction between specific nascent chains and the ribosomal tunnel is used to induce translational stalling for the regulation of gene expression. One well-characterized example is the Escherichia coli SecM (secretion monitor) gene product, which induces stalling to up-regulate translation initiation of the downstream secA gene, which is needed for protein export. Although many of the key components of SecM and the ribosomal tunnel have been identified, understanding of the mechanism by which the peptidyl transferase center of the ribosome is inactivated has been lacking. Here we present a cryo-electron microscopy reconstruction of a SecM-stalled ribosome nascent chain complex at 5.6 Å. While no cascade of rRNA conformational changes is evident, this structure reveals the direct interaction between critical residues of SecM and the ribosomal tunnel. Moreover, a shift in the position of the tRNA–nascent peptide linkage of the SecM-tRNA provides a rationale for peptidyl transferase center silencing, conditional on the simultaneous presence of a Pro-tRNAPro in the ribosomal A-site. These results suggest a distinct allosteric mechanism of regulating translational elongation by the SecM stalling peptide.  相似文献   

14.
Impairment of mitochondrial protein homeostasis disrupts mitochondrial function and causes human diseases and aging, but the molecular mechanisms of protein synthesis and quality control in mammalian mitochondria are not fully understood. Here we demonstrate in human cells that misincorporation of an arginine analog, canavanine, during mitochondrial protein synthesis, induced aberrant translation products and destabilized the mtDNA-encoded proteome, leading to loss of mitochondrial respiratory chain complexes. Furthermore, in the presence of a high concentration of canavanine, mitoribosome stalling could be demonstrated. The stalling did not, however, occur at arginine codons, but downstream of those codons. In particular, two adjacent arginines induced the most prominent downstream stalling effect, with the distance between the arginine codons and the stalling peak corresponding roughly to the length of the ribosomal exit tunnel. These results suggest that misincorporated canavanine disrupted the proper folding of the hydrophobic nascent polypeptides within the exit tunnel or while being inserted into the inner mitochondrial membrane. The canavanine treatment provides a model system for studying the consequences of mitoribosome stalling and the responses to misfolded proteins exiting the mitochondrial ribosome.  相似文献   

15.
The ribosomal exit tunnel had recently become the centre of many functional and structural studies. Accumulated evidence indicates that the tunnel is not simply a passive conduit for the nascent chain, but a rather functionally important compartment where nascent peptide sequences can interact with the ribosome to signal translation to slow down or even stop. To explore further this interaction, we have synthesized short peptides attached to the amino group of a chloramphenicol (CAM) base, such that when bound to the ribosome these compounds mimic a nascent peptidyl-tRNA chain bound to the A-site of the peptidyltransferase center (PTC). Here we show that these CAM-peptides interact with the PTC of the ribosome while their effectiveness can be modulated by the sequence of the peptide, suggesting a direct interaction of the peptide with the ribosomal tunnel. Indeed, chemical footprinting in the presence of CAM-P2, one of the tested CAM-peptides, reveals protection of 23S rRNA nucleotides located deep within the tunnel, indicating a potential interaction with specific components of the ribosomal tunnel. Collectively, our findings suggest that the CAM-based peptide derivatives will be useful tools for targeting polypeptide chain mimics to the ribosomal tunnel, allowing their conformation and interaction with the ribosomal tunnel to be explored using further biochemical and structural methods.  相似文献   

16.
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.  相似文献   

17.
Several nascent peptides stall ribosomes during their own translation in both prokaryotes and eukaryotes. Leader peptides that induce stalling can regulate downstream gene expression. Interestingly, stalling peptides show little sequence similarity and interact with the ribosome through distinct mechanisms. To explore the scope of regulation by stalling peptides and to better understand the mechanism of stalling, we identified and characterized new examples from random libraries. We created a genetic selection that ties the life of Escherichia coli cells to stalling at a specific site. This selection relies on the natural bacterial system that rescues arrested ribosomes. We altered transfer-messenger RNA, a key component of this rescue system, to direct the completion of a necessary protein if and only if stalling occurs. We identified three classes of stalling peptides: C-terminal Pro residues, SecM-like peptides, and the novel stalling sequence FXXYXIWPP. Like the leader peptides SecM and TnaC, the FXXYXIWPP peptide induces stalling efficiently by inhibiting peptidyl transfer. The nascent peptide exit tunnel and peptidyltransferase center are implicated in this stalling event, although mutations in the ribosome affect stalling on SecM and FXXYXIWPP differently. We conclude that ribosome stalling can be caused by numerous sequences and is more common than previously believed.  相似文献   

18.
The peptidyl transferase (PT) center of the ribosome catalyzes two nucleophilic reactions, peptide bond formation between aminoacylated tRNA substrates and, together with release factor, peptide release. Structure and function of the PT center are modulated by binding of aminoacyl-tRNA or release factor, thus providing the basis for the specificity of catalysis. Another way by which the function of the PT center is controlled is signaling from the peptide exit tunnel. The SecM nascent peptide induces ribosome stalling, presumably by inhibition of peptide bond formation. Similarly, the release factor-induced hydrolytic activity of the PT center can be suppressed by the TnaC nascent peptide contained in the exit tunnel. Thus, local and long-range conformational rearrangements can lead to changes in the reaction specificity and catalytic activity of the PT center.  相似文献   

19.
Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.  相似文献   

20.
This review describes the results of recent studies of the ribosomal tunnel (RT), the major function of which is to allow the smooth passage of nascent polypeptides with different sequences from the peptidyl transferase center of the ribosome to the tunnel exit, where the folding of protein molecules begins. The features of structural organization of RT and their role in modulation and stabilization of the nascent chain conformation are discussed. Structural features of macrolide binding sites as well as application of macrolide antibiotics and their derivatives as tools to investigate ligand-tunnel wall interactions are also considered. Several examples of strong and specific interactions of regulatory polypeptides with nucleotide and amino acid residues of RT that lead to ribosome stalling and translational arrest are described in detail. The role of these events in regulation of expression of certain genes is discussed on the basis of recent high-resolution structural studies of nascent chains in the RT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号