首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family is known to play an important role in the pathogenesis of osteoarthritis (OA), working on aggrecan degradation or altering the integrity of extracellular matrix (ECM). Thus, the main purpose of our study was to define the role of vasoactive intestinal peptide (VIP) and corticotrophin‐releasing factor (CRF), as immunoregulatory neuropeptides, on ADAMTS production in synovial fibroblasts (SF) from OA patients and healthy donors (HD). OA‐ and HD‐SF were stimulated with pro‐inflammatory mediators and treated with VIP or CRF. Both neuropeptides decreased ADAMTS‐4, ‐5, ‐7 and ‐12 expressions, aggrecanase activity, glycosaminoglycans (GAG), and cartilage oligomeric matrix protein (COMP) degradation after stimulation with fibronectin fragments (Fn‐fs) in OA‐SF. After stimulation with interleukin‐1β, VIP reduced ADAMTS‐4 and ‐5, and both neuropeptides decreased ADAMTS‐7 production and COMP degradation. Moreover, VIP and CRF reduced Runx2 and β‐catenin activation in OA‐SF. Our data suggest that the role of VIP and CRF on ADAMTS expression and cartilage degradation could be related to the OA pathology since scarce effects were produced in HD‐SF. In addition, their effects might be greater when a degradation loop has been established, given that they were higher after stimulation with Fn‐fs. Our results point to novel OA therapies based on the use of neuropeptides, since VIP and CRF are able to stop the first critical step, the loss of cartilage aggrecan and the ECM destabilization during joint degradation.  相似文献   

2.
Osteoarthritis (OA) is the most common rheumatic pathology. One of the major objectives of OA research is the development of early diagnostic strategies such as those using proteomic technology. Synovial fluid (SF) in OA patients is a potential source of biomarkers for OA. The efficient and reliable preparation of SF proteomes is a critical step towards biomarker discovery. In this study, we have optimized a pretreatment method for two-dimensional gel electrophoresis (2DE) separation of the SF proteome, by enriching low-abundance proteins and simultaneously removing hyaluronic acid, albumin, and IgG. SF samples pretreated using this optimized method were then evaluated by 1DE and 2DE separation followed by immunodetection of cartilage oligomeric matrix protein (COMP), a known OA biomarker, and by the identification of 3 proteins (apolipoprotein, haptoglobin precursor, and fibrinogen D fragment) that are related to joint diseases.  相似文献   

3.

Introduction

Cartilage protein distribution and the changes that occur in cartilage ageing and disease are essential in understanding the process of cartilage ageing and age related diseases such as osteoarthritis. The aim of this study was to investigate the peptide profiles in ageing and osteoarthritic (OA) cartilage sections using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI).

Methods

The distribution of proteins in young, old and OA equine cartilage was compared following tryptic digestion of cartilage slices and MALDI-MSI undertaken with a MALDI SYNAPT™ HDMS system. Protein identification was undertaken using database searches following multivariate analysis. Peptide intensity differences between young, ageing and OA cartilage were imaged with Biomap software. Analysis of aggrecanase specific cleavage patterns of a crude cartilage proteoglycan extract were used to validate some of the differences in peptide intensity identified. Immunohistochemistry studies validated the differences in protein abundance.

Results

Young, old and OA equine cartilage was discriminated based on their peptide signature using discriminant analysis. Proteins including aggrecan core protein, fibromodulin, and cartilage oligomeric matrix protein were identified and localised. Fibronectin peptides displayed a stronger intensity in OA cartilage. Age-specific protein markers for collectin-43 and cartilage oligomeric matrix protein were identified. In addition potential fibromodulin and biglycan peptides targeted for degradation in OA were detected.

Conclusions

MALDI-MSI provided a novel platform to study cartilage ageing and disease enabling age and disease specific peptides in cartilage to be elucidated and spatially resolved.  相似文献   

4.
Failure of therapeutic approaches for the treatment of osteoarthritis (OA) based on the inhibition of metalloproteinases, might be because of their constitutive expression in homeostasis, together with their network complexity. The knowledge of this network would contribute to selective target pathological conditions. In this sense, blockade of mediators produced by neighbouring joint cells, such as synovial fibroblasts (SF), would prevent cartilage damage. Thus, we studied the contribution of ADAMTS‐7 and ‐12 from SF to cartilage oligomeric matrix protein (COMP) degradation, and the signalling pathways involved in their expression. We report for the first time in SF, the involvement of ERK‐Runx2 axis and Wnt/β‐catenin signalling in ADAMTS‐12 and ADAMTS‐7 expressions, respectively, with the subsequent consequences in COMP degradation from cartilage extracellular matrix. After stimulation with IL‐1β or fibronectin fragments, we showed that ERK inhibition decreased Runx2 activation and ADAMTS‐12 expression in OA‐SF, also reducing Fn‐fs‐induced COMP degradation. Blockage of Wnt signalling by DKK1 reduced ADAMTS‐7 and COMP degradation in OA‐SF as well. In addition, Wnt7B expression was induced by IL‐1β and by itself, also increasing ADAMTS‐7. Our results could contribute to the development of disease‐modifying OA drugs targeting ADAMTS‐7 and ‐12 for the prevention of extracellular matrix components degradation like COMP.  相似文献   

5.
IntroductionInflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.MethodsExpression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR). Fibroblast adhesion and migration capacity was assessed using cartilage attachment assays and wound-healing assays, respectively. For in vivo studies, FAP-deficient mice were crossed into the human tumor necrosis factor transgenic mice (hTNFtg), which develop a chronic inflammatory arthritis. Beside clinical assessment, inflammation, cartilage damage, and bone erosion were evaluated by histomorphometric analyses.ResultsRA synovial tissues demonstrated high expression of FAP whereas in OA samples only marginal expression was detectable. Consistently, a higher expression was detected in arthritis SF compared to non-arthritis OA SF in vitro. FAP-deficiency in hTNFtg mice led to less cartilage degradation despite unaltered inflammation and bone erosion. Accordingly, FAP−/− hTNFtg SF demonstrated a lower cartilage adhesion capacity compared to hTNFtg SF in vitro.ConclusionsThese data point to a so far unknown role of FAP in the attachment of SF to cartilage, promoting proteoglycan loss and subsequently cartilage degradation in chronic inflammatory arthritis.  相似文献   

6.
The synthesis and contents of extracellular non-collagenous matrix macromolecules was studied in early and late human osteoarthritic (OA) cartilage obtained at surgery for sarcomas in the lower extremities (normal and early OA) or for total knee replacement (late stage OA). The early OA samples were those that had some fibrillation in the joint by visual examination. One group had fibrillation in the area sampled and the other group had no fibrillation. Cartilage was taken from the same topographical area on the medial femoral condyle in all the samples, labeled with [3H]leucine and [35S]sulfate for 4 h at 37 degrees C and extracted with 4 M guanidine-HCl. Analysis of the extracts showed that the total amount of proteoglycans relative to hydroxyproline content was higher in the early and late OA than in the normal cartilage. These proteoglycans showed a relatively lower [35S]sulfate incorporation into GAG chains and a higher [3H]leucine incorporation. The pattern of newly synthesized proteins was altered similarly in early and late OA. Notably, synthesis of cartilage oligomeric matrix protein (COMP), fibronectin, and cartilage intermediate layer protein (CILP) was increased, also reflected in their abundance as determined by enzyme-linked immunosorbent assay (ELISA). Collagen synthesis appeared significantly increased only in the late stage OA. The observed altered composition and pattern of biosynthesis indicate that the joint undergoes metabolic alterations early in the disease process, even before there is overt fibrillation of the tissue. The early OA samples studied appear to represent two distinct groups of early lesions in different stages of the process of cartilage deterioration as shown by their differences in relative rates of synthesis and abundance of proteins.  相似文献   

7.
The development of increasingly high-throughput and sensitive mass spectroscopy-based proteomic techniques provides new opportunities to examine the physiology and pathophysiology of many biologic fluids and tissues. The purpose of this study was to determine protein expression profiles of high-abundance synovial fluid (SF) proteins in health and in the prevalent joint disease osteoarthritis (OA). A cross-sectional study of 62 patients with early OA (n = 21), patients with late OA (n = 21), and control individuals (n = 20) was conducted. SF proteins were separated by using one-dimensional PAGE, and the in-gel digested proteins were analyzed by electrospray ionization tandem mass spectrometry. A total of 362 spots were examined and 135 high-abundance SF proteins were identified as being expressed across all three study cohorts. A total of 135 SF proteins were identified. Eighteen proteins were found to be significantly differentially expressed between control individuals and OA patients. Two subsets of OA that are not dependent on disease duration were identified using unsupervised analysis of the data. Several novel SF proteins were also identified. Our analyses demonstrate no disease duration-dependent differences in abundant protein composition of SF in OA, and we clearly identified two previously unappreciated yet distinct subsets of protein profiles in this disease cohort. Additionally, our findings reveal novel abundant protein species in healthy SF whose functional contribution to SF physiology was not previously recognized. Finally, our studies identify candidate biomarkers for OA with potential for use as highly sensitive and specific tests for diagnostic purposes or for evaluating therapeutic response.  相似文献   

8.
The measurement of body fluid levels of biochemical markers in joint tissues has begun to provide clinically useful information. Synovial fluid (SF) plays an important role in articular joint lubrication, nutrition, and metabolism of cartilage and other connective tissues within the joint. The purpose of our study was to identify and characterize osteogenic protein 1 (OP-1) in SF from patients with rheumatoid arthritis (RA) or with osteoarthritis (OA) and to correlate levels of OP-1 with those of hyaluronan (HA) and antigenic keratan sulfate (AgKS). SF was aspirated from the knees of patients with either RA or OA and from the knees of asymptomatic organ donors with no documented history of joint disease. The presence of detectable OP-1 in SF was demonstrated by western blots with specific anti-pro-OP-1 and anti-mature OP-1 antibodies. Measurement of levels of OP-1, HA and AgKS was performed using ELISAs. OP-1 was identified in human SF in two forms, pro-OP-1 and active (mature) OP-1 – mature OP-1 being detected only in SF from OA patients and RA patients. Levels of OP-1 and HA were higher in RA patients than in OA patients and asymptomatic donors, while the level of AgKS was highest in SF from asymptomatic donors. Statistically significant differences were found between SF levels of OP-1 in RA and OA patients and between SF levels of AgKS among the three groups tested. The SF content of OP-1 tended to correlate positively with HA levels, but negatively with AgKS concentrations. In conclusion, the results of this study suggest that measurement of OP-1 in joint fluid may have value in the clinical evaluation of joint disease processes.  相似文献   

9.

Background

Rheumatoid arthritis (RA) is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor), and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA) can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes) of proteoglycan (PG) aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG) can contribute to autoimmunity in RA.

Methods

CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1) was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA) and RA cartilage using immunohistochemistry.

Findings

Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain) from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s) of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage.

Conclusions

CitPG is a new member of citrullinated proteins identified in human joints. CitPG could be found in both normal and diseased cartilage specimens. Antibodies against CitPG may trigger or augment arthritis by forming immune complexes with this autoantigen in the joints of ACPA+ RA patients.  相似文献   

10.
Osteoarthritis (OA) is the most common rheumatic pathology. Because currently available diagnostic methods are limited and lack sensitivity, the identification of new specific biological markers for OA has become a focus. The purpose of this study was to identify novel protein biomarkers for moderate and severe OA in serum. Sera were obtained from 50 moderate OA patients, 50 severe OA patients, and 50 nonsymptomatic controls. Serum protein levels were analyzed using isobaric tags for relative and absolute quantitation (iTRAQ) and matrix-assisted laser desorption/ionization (MALDI)-TOF/TOF mass spectrometry. We identified 349 different proteins in the sera, 262 of which could be quantified by calculation of their iTRAQ ratios. Three sets of proteins were significantly (p < 0.05) changed in OA samples compared to controls. Of these, 6 were modulated only in moderate OA, 13 only in severe OA and 7 in both degrees. Although some of these proteins, such as cartilage oligomeric matrix protein, have a previously reported putative biomarker value for OA, most are novel biomarker candidates for the disease. These include some complement components, lipoproteins, von Willebrand factor, tetranectin, and lumican. The specificity and selectivity of these candidates need to be validated before new molecular diagnostic or prognostic tests for OA can be developed.  相似文献   

11.
Aggrecanases are key matrix-degrading enzymes that act by cleaving aggrecan at the Glu(373)-Ala(374) site. While these fragments have been detected in osteoarthritis (OA) and rheumatoid arthritis (RA) cartilage and synovial fluid, no information is available on the regulation or expression of the two key aggrecanases (aggrecanase-1 and aggrecanase-2) in synovial tissue (ST) or fibroblast-like synoviocytes (FLS). The aggrecanase-1 gene was constitutively expressed by both RA and OA FLS. Real-time PCR demonstrated that TGF-beta significantly increased aggrecanase-1 gene expression in FLS. Aggrecanase-1 induction peaked after 24 h of TGF-beta stimulation. The expression of aggrecanase-1 mRNA was significantly greater in RA ST than in OA or nonarthritis ST. Aggrecanase-2 mRNA and protein were constitutively produced by nonarthritis, OA, and RA FLS but were not increased by IL-1, TNF-alpha, or TGF-beta. Furthermore, OA, RA, and nonarthritis ST contained similar amounts of immunoreactive aggrecanase-2. The major form of the aggrecanase-2 enzyme was 70 kDa in nonarthritis ST, whereas a processed 53-kDa form was abundant in RA ST. Therefore, aggrecanase-1 and -2 are differentially regulated in FLS. Both are constitutively expressed, but aggrecanase-1 is induced by cytokines, especially TGF-beta. In contrast, aggrecanase-2 protein may be regulated by a post-translational mechanism in OA and RA ST. Synovial and FLS production of aggrecanase can contribute to cartilage degradation in RA and OA.  相似文献   

12.
OBJECTIVES: To investigate whether serum levels of matrix metalloproteinases (MMP-3, stromelysin) and (MMP-1, collagenase) are specifically elevated in joint disease as rheumatoid arthritis (RA) compared to osteoarthritis (OA), and to assess how these markers reflect the clinical activity of RA compared to circulating cytokine as tumor necrosis factor-alpha (TNF-alpha) as well as established variables as [C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR)]. SUBJECTS AND METHODS: This study included 22 patients with RA, 10 patients with OA and 10 healthy control subjects matched for age and sex. Patients with superimposed infection were excluded. Serum levels of MMP-3, MMP-1, TNF-alpha and CRP were assayed. Synovial fluid (SF) levels of MMP-3 and MMP-1 were also assayed. RESULTS: Serum levels of TNF-alpha and CRP in RA patients were significantly higher than normal subjects. Serum MMP-1 was significantly elevated in patients with RA and OA, compared to healthy controls but there were no significant differences between patients with RA and those with OA. Serum MMP-3 levels did not differ between OA patients and normal sera. However, RA patients displayed significantly elevated levels of this enzyme, compared to OA and control sera. Levels of MMP-3 and MMP-1 in the SF of RA patients were significantly higher than in OA fluids. CRP, ESR, TNF-alpha and MMP-3 correlated significantly with the swollen joint count. The strongest positive correlations existed between rheumatoid activity as assessed by the levels of CRP and circulating levels of MMP-3. Similar correlations between TNF-alpha concentration and CRP, MMP-1 and MMP-3 were observed in RA patients. Serum levels of MMP-3 correlated significantly with serum concentrations of MMP-1 in RA patients (r = 0.487, p < 0.05). There was close correlation between serum and SF concentrations of MMP-3 in RA patients (r = 0.619, p < 0.01). In the same patients there was highly significant correlation between SF concentrations of MMP-3 and MMP-1 (r = 0.732, p < 0.001). CONCLUSIONS: Our data suggested that elevated MMP-3 levels reflected disease activity of RA better than cytokine levels. However, MMP-3 levels do not exceed the association of CRP with clinical activity.  相似文献   

13.
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the major types of arthritis. Although both diseases are characterized by joint destruction, their etiologies are different. To get insights into pathophysiological pathways, we used the suppression subtractive hybridization (SSH) method to identify differentially expressed genes in RA. DNA sequencing identified 12 gene products including cytoskeletal γ-actin and extracellular matrix components such as fibronectin, collagen IIIα1, and superficial zone protein. Interferon γ-inducible genes such as a novel thiol reductase, two genes of unknown function (HSIFNIN4, RING3), and annexin II were also found. Two genes encoded proteins involved in proliferation such as elongation factor 1α and the granulin precursor. Furthermore, the protease cathepsin B and synovial phospholipase A2 group IIA were detected by SSH. To confirm the differential expression of the genes, we performed RT-PCR analyses of RA and OA synovial tissues. Compared to OA patients, 9 of the 12 genes were overexpressed in RA, suggesting that SSH is a powerful tool for the detection of differential gene expression in synovial tissues. Further characterization of the gene products may help to identify pathophysiological mechanisms in arthritic diseases.  相似文献   

14.
We have developed a method to detect cartilage oligomeric matrix protein (COMP) as a specific biomarker of osteoarthritis (OA). In pathological conditions of the cartilage, COMP is released first into the synovial fluid (SF) and from there into the blood. Thus, measurement of COMP in the blood and SF facilitates OA diagnosis. To determine COMP, we developed a fluoro-microbead guiding chip (FMGC)-based immunoassay. The FMGC has four immunoreactive regions, each with five patterns, to allow multiple assays. A COMP-specific capture antibody was immobilized to the FMGC surface to create a self-assembled interfacial layer. SF or serum samples from patients with OA possessing the target COMP were applied to the COMP-sensing monolayer. To generate binding signal, COMP detection antibody-conjugated fluoro-microbeads were applied and the numbers of fluoro-microbeads bound specifically were counted to determine COMP concentrations. This FMGC-based immunoassay clearly distinguished immunospecific from nonspecific binding by comparing optical signals from inside and outside of the patterns. The optical signals showed linear correlations with serum and SF COMP concentrations. Optical detection and quantification of COMP using fluorescence microscopy correlated well with results from commercial enzyme-linked immunosorbent assay (ELISA). This FMGC-based immunoassay offers a new approach for detecting a clinically relevant biomarker for OA in human blood and SF.  相似文献   

15.
Objective  Rheumatoid arthritis (RA) is an autoimmune disease that targets the synovium. The autoantigens involved in the autoantibody responses in RA are unknown. A targeted proteomics approach was used to identify proteins in RA synovial fluid (SF) that are recognized by autoantibodies in RA sera. Methods  RA SF, depleted of abundant proteins, was fractionated by two-dimensional liquid chromatography (chromatofocusing followed by reverse phase HPLC). Protein arrays constructed from these fractions were probed with RA and normal control sera, and proteins within reactive fractions were identified by mass spectrometry. The reactivity of RA sera to an identified peptide was confirmed by ELISA. Results  RA sera specifically reacted to a SF fraction containing fibrin. Mass spectrometry analyses established the presence of a citrullinated arginine at position 271 of the fibrin fragment present in RA SF. A synthetic peptide corresponding to fibrin residues 259–287, containing the citrulline substitution at Arg 271, was recognized by 10 of 12 RA sera, but by two of 18 normal control sera and one of 10 systemic lupus erythematosus sera. Conclusion  Proteomics methodology can be used to directly characterize post-translational modifications in candidate autoantigens isolated from sites of disease activity. The finding that RA sera contain antibodies to the citrullinated fibrin 259–287 peptide may ultimately lead to improved diagnostic tests for RA and/or biomarkers for disease activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.

Introduction

The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the ''whole joint’, the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable ''snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF.

Methods

A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines.

Results

Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA.

Conclusions

The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a ''chronic wound’ that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which could limit proteolytic activity that ultimately leads to cartilage destruction.  相似文献   

17.
As extracellular proteins age, they undergo and accumulate nonenzymatic post-translational modifications that cannot be repaired. We hypothesized that these could be used to systemically monitor loss of extracellular matrix due to chronic arthritic diseases such as osteoarthritis (OA). To test this, we predicted sites of deamidation in cartilage oligomeric matrix protein (COMP) and confirmed, by mass spectroscopy, the presence of deamidated (Asp(64)) and native (Asn(64)) COMP epitopes (mean 0.95% deamidated COMP (D-COMP) relative to native COMP) in cartilage. An Asp(64), D-COMP-specific ELISA was developed using a newly created monoclonal antibody 6-1A12. In a joint replacement study, serum D-COMP (p = 0.017), but not total COMP (p = 0.5), declined significantly after replacement demonstrating a joint tissue source for D-COMP. In analyses of 450 participants from the Johnston County Osteoarthritis Project controlled for age, gender, and race, D-COMP was associated with radiographic hip (p < 0.0001) but not knee (p = 0.95) OA severity. In contrast, total COMP was associated with radiographic knee (p < 0.0001) but not hip (p = 0.47) OA severity. D-COMP was higher in soluble proteins extracted from hip cartilage proximal to OA lesions compared with remote from lesions (p = 0.007) or lesional and remote OA knee (p < 0.01) cartilage. Total COMP in cartilage did not vary by joint site or proximity to the lesion. This study demonstrates the presence of D-COMP in articular cartilage and the systemic circulation, and to our knowledge, it is the first biomarker to show specificity for a particular joint site. We believe that enrichment of deamidated epitope in hip OA cartilage indicates a lesser repair response of hip OA compared with knee OA cartilage.  相似文献   

18.
To delineate the functional significance of IL-17 Receptor (IL-17RA) and characterize the IL-17 producing T cell (Th17) subpopulation in psoriatic arthritis (PsA). Mononuclear cells from blood and synovial fluid (SF) were obtained from PsA (n=20), rheumatoid arthritis (RA, n=20) and osteoarthritis (OA, n=20) patients. Synoviocytes (FLS) were isolated from the synovium of RA (n=5), PsA (n=5) and OA (n=5) patients. IL-17RA expression in FLS was identified by western blotting (WB) and flowcytometry. T lymphocytes derived from the SF of these patients were studied to identify and phenotype the Th17 cells. The functional significance of IL-17RA was determined by evaluating its regulatory role on the production of proinflammatory cytokines and endopeptidase. IL-17RA expression was found to be significantly higher in FLS of RA (15.7%±4.9) and PsA (4.5%±0.9) in comparison to OA (1.14%±0.9). Western blot analyses showed that the relative intensity (RI) of IL-17RA protein was higher in RA and PsA compared to OA (Fisher exact, P<0.01). A significant enrichment of IL-17-producing CD4+ T cells (7.9%±2.8) was observed in the SF of PsA patients compared to that of OA patients (P<.001). Compared to OA-FLS, recombinant IL-17 induced higher levels of IL-6, IL-8, and MMP-3 production in PsA-FLS. Blockage of IL-17RA with an anti-IL-17RA antibody inhibited the production of IL-6, IL-8, and MMP-3. This is the first report to demonstrate the functional significance of IL-17RA in PsA. Results of this study support the hypothesis that IL-17RA blocking antibodies have the potential to be a therapeutic option for psoriatic arthritis.  相似文献   

19.
Martin JA  Buckwalter JA 《Biorheology》2000,37(1-2):129-140
Throughout life chondrocytes maintain the articular cartilage matrix by replacing degraded macromolecules and respond to focal cartilage injury or degeneration by increasing local synthesis activity. These observations suggest that mechanisms exist within articular cartilage that stimulate chondrocyte anabolic activity in response to matrix degradation or damage. An important cartilage anabolic factor, insulin-like growth factor I (IGF-I), appears to have a role in stimulating chondrocyte anabolic activity. Although IGF-I is ubiquitous, its bioavailability is controlled by a class of secreted proteins, IGF binding proteins (IGFPBs). Of the six known IGFPBs, IGFBP-3 is the most abundant in human articular cartilage. We recently found that with increasing age, articular chondrocytes increase their expression of IGFBP-3. This observation led us to investigate the potential role of IGFBP-3 in chondrocyte-matrix interactions. Using immunofluorescent staining and confocal microscopy we found that IGFBP-3 accumulates with increasing age in the chondrocyte territorial matrix where it co-localizes with fibronectin, but not with tenascin-C or type VI collagen. Using purified proteins we demonstrated that IGFBP-3 binds to fibronectin in a dose dependent manner, but not to tenascin-C. In vitro studies showed that IGFBP-3 alone inhibited chondrocyte synthetic activity while intact fibronectin alone significantly stimulated activity. When fibronectin and IGFBP-3 were combined we found that the inhibitory activity of low concentrations of IGFPB-3 was enhanced. These observations indicate that in mature articular cartilage IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFPB-3 and intact fibronectin. Storage of IGF-I of the territorial matrix may help maintain a relatively constant level of available IGF-I and the local increase in matrix synthesis following matrix damage may result from release of IGF-I. This mechanism may have an important role in maintaining and repairing articular cartilage and failure of this mechanism may lead to progressive articular cartilage degeneration.  相似文献   

20.
Destruction of cartilage by matrix metalloproteinases (MMPs) plays a significant role in the pathology of osteoarthritis (OA). A translatable biomarker of MMP activity would enable development of MMP inhibitors for the treatment of OA and potentially the improved diagnosis of OA. A directed approach to identifying specific MMP cleavage products as potential biomarkers has been undertaken. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify peptides generated by MMP-driven degradation of human articular cartilage (HAC) in vivo. It was shown that a 45-mer peptide fragment of collagen type II with five hydroxyprolines (OH) can be selectively produced by the activity of collagenase, an enzyme purported to be involved in the pathology of OA. This 45-mer is the most abundant neoepitope peptide found in biological fluids such as urine and synovial fluid. An immunoaffinity LC-MS/MS assay has been developed to quantify collagen type II neoepitope peptides as biomarkers of collagenase modulation. The lower limit of quantification for this assay was established to be 0.035 nM. The assay was used to measure the levels of collagen type II peptides in the urine of both clinical (healthy human subjects) and preclinical species. The urinary levels of the most abundant peptides are reported for rat, rabbit, guinea pig, dog, and healthy human adult subjects. The utility of this peptide to monitor collagenase activity in vivo has been demonstrated through its detailed characterization in HAC explants as well as in the urine of human and other preclinical species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号