首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

3.
Structural and dynamic functions establish chromatin domains   总被引:1,自引:0,他引:1  
Ishii K  Laemmli UK 《Molecular cell》2003,11(1):237-248
  相似文献   

4.
The FYVE domain is a conserved protein motif characterized by its ability to bind with high affinity and specificity to phosphatidylinositol 3-phosphate (PI3P), a phosphoinositide highly enriched in early endosomes. The PI3P polar head group contacts specific amino acid residues that are conserved among FYVE domains. Despite full conservation of these residues, the ability of different FYVE domains to bind to endosomes in cells is highly variable. Here we show that the endosomal localization in intact cells absolutely requires structural features intrinsic to the FYVE domain in addition to the PI3P binding pocket. These features are involved in FYVE domain dimerization and in interaction with the membrane bilayer. These interactions, which are determined by non-conserved residues, are likely to be essential for the temporal and spatial control of protein associations at the membrane-cytosol interface within the endocytic pathway.  相似文献   

5.
Much of systems biology aims to predict the behaviour of biological systems on the basis of the set of molecules involved. Understanding the interactions between these molecules is therefore crucial to such efforts. Although many thousands of interactions are known, precise molecular details are available for only a tiny fraction of them. The difficulties that are involved in experimentally determining atomic structures for interacting proteins make predictive methods essential for progress. Structural details can ultimately turn abstract system representations into models that more accurately reflect biological reality.  相似文献   

6.
Structural basis of RXR-DNA interactions   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

9.
10.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

11.
12.
13.
Pin1 contains an N-terminal WW domain and a C-terminal peptidyl-prolyl cis-trans isomerase (PPIase) domain connected by a flexible linker. To address the energetic and structural basis for WW domain recognition of phosphoserine (P.Ser)/phosphothreonine (P. Thr)- proline containing proteins, we report the energetic and structural analysis of a Pin1-phosphopeptide complex. The X-ray crystal structure of Pin1 bound to a doubly phosphorylated peptide (Tyr-P.Ser-Pro-Thr-P.Ser-Pro-Ser) representing a heptad repeat of the RNA polymerase II large subunit's C-terminal domain (CTD), reveals the residues involved in the recognition of a single P.Ser side chain, the rings of two prolines, and the backbone of the CTD peptide. The side chains of neighboring Arg and Ser residues along with a backbone amide contribute to recognition of P.Ser. The lack of widespread conservation of the Arg and Ser residues responsible for P.Ser recognition in the WW domain family suggests that only a subset of WW domains can bind P.Ser-Pro in a similar fashion to that of Pin1.  相似文献   

14.
15.
Structural basis of thrombin-protease-activated receptor interactions   总被引:1,自引:0,他引:1  
Aggregation of platelets is an essential step in the formation of a stable blood clot during vascular injury. The trypsin-like protease thrombin acts as the dominant agonist of platelet activation on engagement of protease-activated receptors (PARs). Important details on the molecular aspects of thrombin-PAR interactions have been revealed recently by structural biology. In the case of human platelets, PAR1 engages thrombin via an extended surface of recognition encompassing the active site and exosite I. In the case of murine platelets, PAR4 binds to the active site in a conformation that leaves exosite I free for interaction with cofactors like PAR3. Human PAR4 mimics the murine receptor binding mechanism for residues upstream of the scissile bond. This information is consistent with existing functional data and provides a solid background for future structural and mutagenesis studies of PAR interaction with thrombin and related proteases.  相似文献   

16.
The uptake of nucleosides (or nucleobases) is essential for nucleic acid synthesis in many human cell types and in parasitic organisms that cannot synthesize nucleotides de novo. The transporters responsible are also the route of entry for many cytotoxic nucleoside analogues used in cancer and viral chemotherapy. Moreover, by regulating adenosine concentrations in the vicinity of its cell-surface receptors, nucleoside transporters profoundly affect neurotransmission, vascular tone and other processes. The recent molecular characterization of two families of human nucleoside transporters has provided new insights into the mechanisms of natural nucleoside and drug uptake and into future developments of improved therapies.  相似文献   

17.
S Topiol 《Chirality》1989,1(1):69-79
A general criterion is formulated for molecular recognition. The criterion for recognition is the inequality of the distance matrices of complexes of different compounds with a resolving agent under ambient experimental conditions. It is shown how this criterion provides for an objective, well-defined, and simple explanation for recognition of chiral compounds. This approach may be used to explain models (e.g., three-point of attachment) and relationships for chiral recognition. It is also shown how one-, two-, or three-point mechanisms are equivalent in this formalism and could result in chiral recognition. Examples are used to illustrate how the so called one- or two-point mechanisms may be operative in many experimental findings. Symmetry requirements of resolving agents may also be derived from considerations of distance matrices. Finally, the reciprocal relationship of chiral resolving agents is easily derived from the present method of analysis.  相似文献   

18.
Structural basis of membrane invagination by F-BAR domains   总被引:1,自引:0,他引:1  
BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.  相似文献   

19.
Brain wiring depends on cells making highly localized and selective connections through surface protein-protein interactions, including those between NetrinGs and NetrinG ligands (NGLs). The NetrinGs are members of the structurally uncharacterized netrin family. We present a comprehensive crystallographic analysis comprising NetrinG1-NGL1 and NetrinG2-NGL2 complexes, unliganded NetrinG2 and NGL3. Cognate NetrinG-NGL interactions depend on three specificity-conferring NetrinG loops, clasped tightly by matching NGL surfaces. We engineered these NGL surfaces to implant custom-made affinities for NetrinG1 and NetrinG2. In a cellular patterning assay, we demonstrate that NetrinG-binding selectivity can direct the sorting of a mixed population of NGLs into discrete cell surface subdomains. These results provide a molecular model for selectivity-based patterning in a neuronal recognition system, dysregulation of which is associated with severe neuropsychological disorders.  相似文献   

20.
Src homology 2 (SH2) domains are protein modules (of approximately 100 amino acids) found in many proteins involved in tyrosine kinase signalling cascades. Their function is to bind tyrosine-phosphorylated sequences in specific protein targets. Binding of an SH2 domain to its cognate tyrosine-phosphorylated target links receptor activation to downstream signalling, both to the nucleus to regulate gene expression and throughout the cytoplasm of the cell. This review recapitulates the roles that SH2 domains play in normal and diseased states, describes the successes of SH2 domain research in deciphering their mechanism of action, and provides an overview of the use of SH2 domains as structural templates for the design of inhibitor drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号