共查询到20条相似文献,搜索用时 15 毫秒
1.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates. 相似文献
2.
Uversky VN 《Structure (London, England : 1993)》2005,13(8):1090-1092
3.
The conformational and dynamic properties of a cyclic peptide designed to inhibit human renin have been examined by using NMR and molecular modeling. From a quantitative analysis of a series of two-dimensional NOE data sets, proton-proton distances were calculated. Several different methods were explored and compared to incorporate these distance constraints as well as those derived from vicinal spin-spin coupling constants into computer-generated three-dimensional structures. These methods included interactive manual manipulation of the structures to fit the NMR-determined distance constraints, distance geometry, constrained energy minimizations, and constrained molecular dynamics. The advantages and disadvantages of the methods are discussed. In addition, to gain insight into the conformations accessible to the cyclic peptide and the relative flexibility of the different parts of the molecule, molecular dynamics calculations were performed at three different temperatures. Average interproton distances and dihedral angles were obtained from the structures generated in the dynamics trajectories and compared to those obtained from the NMR experiments. Despite the four methylene groups and ether linkage contained in the cyclic portion of the peptide, our NMR results indicated a preferred conformation for the macrocyclic ring of the peptide and supported the presence of a cis Phe-Ala peptide bond. In contrast, both the molecular dynamics and NMR data indicated a considerable amount of flexibility for the remaining noncyclic portion of the molecule. These results are used to propose an explanation for the cyclic peptide's inability to inhibit human renin. 相似文献
4.
Svane AS Jahn K Deva T Malmendal A Otzen DE Dittmer J Nielsen NC 《Biophysical journal》2008,95(1):366-377
The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils. 相似文献
5.
M. Païs F.-X. Jarreau M.González Sierra O.A. Mascaretti Edmundo A. Ruveda Ching-Jer Chang Edward W. Hagaman Ernest Wenkert 《Phytochemistry》1979,18(11):1869-1872
The chemical shifts of the carbons of the peptide alkaloids discarine-A, discarine-B, lasiodine-A, lasiodine-B, pandamine, pandaminine and hymenocardine have been assigned. 相似文献
6.
A peptide fragment from a protein hairpin turn region was modified by addition of isoleucine residues to both ends to enhance binding to lipid micelles; the resulting peptide (I(1)-I(2)-C(3)-N(4)-N(5)-P(6)-H(7)-I(8)-I(9)) contains the core sequence I-C-N-N-P-H from an antibody-binding region of hemagglutinin A. Nuclear magnetic resonance (NMR) diffusion measurements indicated partial binding (43-65%) of the peptide to micelles of n-octylglucoside and significantly stronger binding (85%) to dodecylphosphocholine (DPC) micelles. Simulated annealing and conformational analysis using nuclear Overhauser enhancement restraints revealed a type I or III hairpin turn between residues N(5) and I(8) of the DPC-bound peptide. Amide exchange experiments support the possibility that a hydrogen bond forms between N(5) and I(8), stabilizing the turn. In contrast, no discernable structure was observed for the peptide in aqueous solution by either NMR or circular dichroism. Molecular dynamics simulations of DPC micelles and peptide-micelle complexes suggested that the peptide lies flat on the micelle surface and showed rapid rearrangement of the lipids to accommodate the bound peptide. According to a search performed using the basic local alignment search tool (BLAST), the sequences N-P-H-I and N-P-H-V are present as hairpin turns in eight of the nine proteins whose crystal structures were available. The addition of isoleucine residues and the use of lipid micelles to stabilize hairpin conformations equivalent to those found in proteins generates new possibilities for reproducing biologically important hairpin turns from short, linear peptides. 相似文献
7.
Tjernberg LO Callaway DJ Tjernberg A Hahne S Lilliehöök C Terenius L Thyberg J Nordstedt C 《The Journal of biological chemistry》1999,274(18):12619-12625
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis. 相似文献
8.
9.
One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH(2) (LfB6), derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state (2)H and (31)P NMR experiments are compared with those from an ensemble of all-atom molecular dynamic simulations running in aggregate more than 8.6ms. (2)H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. (31)P NMR spectra show no significant perturbation of the phosphate head groups of either lipid system in the presence of C6-LfB6. Molecular dynamic simulations show that for the negatively charged membrane, the peptide's arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1-2? more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged membrane. We propose this is due to the larger area per lipid in the zwitterionic membrane, which provides more space for the C6 to insert and assume different orientations. 相似文献
10.
Iwasa H Meshitsuka S Hongo K Mizobata T Kawata Y 《The Journal of biological chemistry》2011,286(24):21796-21805
Co-chaperonin GroES from Escherichia coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i.e. the completely disordered state in guanidine hydrochloride, this molecular chaperone forms amyloid fibrils similar to those observed in various neurodegenerative diseases. Thus, this is a good model system to understand the amyloid fibril formation mechanism of intrinsically disordered proteins. Here, we identified a critical intermediate of GroES in the early stages of this fibril formation using NMR and mass spectroscopy measurements. A covalent rearrangement of the polypeptide bond at Asn(45)-Gly(46) and/or Asn(51)-Gly(52) that eventually yield β-aspartic acids via deamidation of asparagine was observed to precede fibril formation. Mutation of these asparagines to alanines resulted in delayed nucleus formation. Our results indicate that peptide bond rearrangement at Asn-Gly enhances the formation of GroES amyloid fibrils. The finding provides a novel insight into the structural process of amyloid fibril formation from a disordered state, which may be applicable to intrinsically disordered proteins in general. 相似文献
11.
Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation
The structure of a hairpin loop—in particular its large accessible surface area and its exposed hydrogen-bonding edges—facilitate an inherent possibility for interactions. Just like higher-order RNA macromolecules, pre-microRNAs possess a hairpin loop, and it plays a crucial role in miRNA biogenesis. Upon inspecting the crystal structures of RNAs with various functions, we noticed that, along with a fairly long double helix, the RNAs contained sequentially different hairpin loops comprising four residues. We therefore applied molecular dynamics simulation to analyze six of these previously unexplored tetraloops, along with GNRA (where N is any nucleotide and R is a purine nucleotide) tetraloops, to understand their structural and functional characteristics. A number of analyses quantifying loop stability by examining base–base stacking, base–sugar and base–phosphate hydrogen bonding, and backbone variability were performed. Importantly, we determined the different interbase stacking preferences of the single-stranded unpaired bases of the hairpin loops, which had not previously been quantified in any form. Furthermore, our study indicates that canonical GNRA structural properties are exhibited by some structures containing non-GNRA loop sequences. 相似文献
12.
Grover A Katiyar SP Singh SK Dubey VK Sundar D 《Biochimica et biophysica acta》2012,1824(12):1476-1483
Protozoa Leishmania donovani (Ld) is the main cause of the endemic disease leishmaniasis. Spermidine synthase (SS), an important enzyme in the synthetic pathway of polyamines in Ld, is an essential element for the survival of this protozoan. Targeting SS may provide an important aid for the development of drugs against Ld. However, absence of tertiary structure of spermidine synthase of Leishmania donovani (LSS) limits the possibilities of structure based drug designing. Presence of the same enzyme in the host itself further challenges the drug development process. We modeled the tertiary structure of LSS using homology modeling approach making use of homologous X-ray crystallographic structure of spermidine synthase of Trypanosoma cruzi (TSS) (2.5? resolution). The modeled structure was stabilized using Molecular Dynamics simulations. Based on active site structural differences between LSS and human spermidine synthase (HSS), we screened a large dataset of compounds against modeled protein using Glide virtual screen docking and selected two best inhibitors based on their docking scores (-10.04 and -13.11 respectively) with LSS and having least/no binding with the human enzyme. Finally Molecular Dynamics simulations were used to assess the dynamic stability of the ligand bound structures and to elaborate on the binding modes. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. 相似文献
13.
X-linked inhibitor of apoptosis protein (XIAP) inhibits apoptosis mainly through inhibition of caspase-9 and executioner caspases of -3 and -7. The inhibition of the former protease is implemented through the bacculoviral inhibitory repeat-3 (Bir3) domain, while the inhibition of the latter is accomplished by the interaction of the linker region located between the Bir1 and the Bir2 domains with their active sites. Both modes of inhibition are antagonized by SMAC, which is released from mitochondria during the initiation of the intrinsic apoptosis pathway. Although the mechanism of SMAC interference in Bir3 inhibition of caspase-9 is clearly established, the mechanism by which SMAC interferes with the inhibition of the executioner caspases by XIAP remains largely unknown. To address this issue, we performed a limited proteolysis of glutathione S-transferase (GST)-tagged XIAP-Bir2 by trypsin in the presence and in the absence of SMAC peptide. Under these conditions, the proteolysis of the linker region was diminished considerably. Furthermore, the rate of association of caspase-3 and -7 with XIAP in the presence of the SMAC peptide was reduced drastically, suggesting that SMAC peptide restricts the exposure of the linker region. A limited proteolysis of caspase-7 in the presence of GST-Bir2 and GST-NBir3 (the Bir3 domain of human NAIP) as negative controls was also performed. Matrix-assisted laser desorption/ionization time-of-flight analysis of the fragments revealed the identity of protected sites, suggesting that the Bir2 domain makes numerous contacts with the large subunit of caspase-7. These, combined with the results from Far-Western experiments, strongly suggest that the groove for the inhibitor(s)-of-apoptosis-protein-binding motif on the Bir2 favors binding to the N-terminus of the large subunit rather than to the small subunit of caspase-7. Our results further show that the active-site pocket of caspase-7 is first occupied by the linker region, followed by the interaction of the N-terminus of the enzyme with the SMAC-binding site of the Bir2 domain. 相似文献
14.
Inside a living cell there can be a variety of interactions for any given protein, which serve to regulate denaturation and renaturation processes. Insights into some of them can be obtained by in vitro studies using various denaturing agents. In this study, all-atom MD simulations in explicit solvent and NMR relaxation studies were performed on HIV-1 Protease (PR) in 9 M acetic acid (AcOH) (the commonly used denaturant during PR preparation). Following previous reports that denaturation proceeds via dissociation of the dimer into monomers, unfolding of the monomer by acetic acid has been explicitly investigated here. Direct visualization of the denaturation process and evidence for the mechanism of denaturation have been presented. Our simulations reveal that the denaturation of the PR monomer is caused due to direct interaction between acetic acid molecules and PR. Autocorrelation of N-H vectors calculated from the simulations have revealed that the α-helix and the surrounding β-strands represent the sensitive regions of the PR that respond maximally to the change in the solvent environment around the PR and are prone to disruption by acetic acid. This disruption is caused due to increased penetration of the acetic acid molecules into the PR structure by formation of preferred tertiary contacts and hydrogen bonds between the PR and acetic acid molecules. Following the loss of these critical interactions, the PR follows a random and non-equilibrating path on the conformation landscape and cycles between different denatured extended and compact states. 相似文献
15.
Mechanism of titin unfolding by force: insight from quasi-equilibrium molecular dynamics calculations 总被引:1,自引:0,他引:1 下载免费PDF全文
We have studied the unfolding by force of one of the immunoglobulin domains of the muscle protein titin using molecular dynamics simulations at 300 K. Previous studies, done at constant pulling rates, showed that under the effect of the force two strands connected to each other by six backbone H-bonds are pulled apart. No details about the mechanism of H-bond breaking were provided. Our simulation protocol "pull and wait" was designed to correspond to very slow pulling, more similar to the rates used in experiments than are the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not "ripped apart" by the application of the force. Instead, small elongations produced by the force weaken specific backbone H-bonds with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance > 3.6 A), but its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds: it destabilizes them in such a way that they are replaced by H-bonds to water. With this mechanism, the force necessary to break all the H-bonds required to separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but long waiting times (> or = 500 ps, < or = 10 ns) show that, given enough time, even a very small pulling force (< 400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K. 相似文献
16.
Jeffrey W. Peng Celia A. Schiffer Ping Xu Wilfred F. van Gunsteren Richard R. Ernst 《Journal of biomolecular NMR》1996,8(4):453-476
Summary The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 s at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight bound water molecules. Within the simulation time of 600 ps, no water molecule leaves the complex. Additionally, the simulations show a reduced flexibility for the complex in comparison with uncomplexed antamanide. Thus, there is a qualitative agreement between the experimental NMR results and the computer simulations. 相似文献
17.
18.
The interaction of succinyl-Pro-Ala, a competitive inhibitor of Achromobacter iophagus collagenase, with the enzyme was studied by longitudinal proton and tritium relaxation. Specific deuterium and tritium labeling of the succinyl part at vicinal positions allowed the measurement of the cross-relaxation rates of individual proton or tritium spin pairs in the inhibitor-enzyme complex as well as in the free inhibitor. Overall correlation times, internuclear distances, and qualitative information on the internal mobility in Suc1 (as provided by the generalized order parameter S2) could be deduced by the comparison of proton and tritium cross-relaxation of spin pairs at complementary positions in the -CH2- CH2- moiety as analyzed in terms of the model-free approach by Lipari and Szabo. The conformational and motional parameters of the inhibitor in the free and enzyme-bound state were directly compared by this method. The measurement of proton cross-relaxation in the Ala residue provided additional information on the inhibitor binding. The determination of the order parameter in different parts of the inhibitor molecule in the bound state indicates that the succinyl and alanyl residues are primarily involved in the interaction with the enzyme activity site. The succinyl moiety, characterized in solution by the conformational equilibrium among the three staggered rotamers--i.e., trans: 50%; g+: 20%; g-: 30%--adopted in the bound state the unique trans conformation. 相似文献
19.
Eliot L. Osher Francisco Castillo Nagarajan Elumalai Michael J. Waring Garry Pairaudeau Ali Tavassoli 《Bioorganic & medicinal chemistry》2018,26(11):3034-3038
We report an inhibitor of the homodimeric protein-protein interaction of the BCL6 oncoprotein, identified from a genetically encoded SICLOPPS library of 3.2 million cyclic hexapeptides in combination with a bacterial reverse two-hybrid system. This cyclic peptide is shown to bind the BTB domain of BCL6, disrupts its homodimerization, and subsequent binding of the SMRT2 corepressor peptide. 相似文献
20.
G7-18NATE is a nonphosphorylated, cyclic peptide that specifically inhibits the Grb7 adapter protein implicated in several pathways critical to cell proliferation and migration. It has been shown that G7-18NATE is able to compete with natural ligands for the Grb7 SH2 phosphotyrosine binding site, and to attenuate cell migration in a pancreatic cancer cell line. It is thus an important lead in the development of a selective inhibitor of Grb7 and potential novel anticancer therapeutics. The current study reports the solution properties of G7- 18NATE determined using NMR spectroscopy, in both water (pH 2-3) and phosphate buffer (pH 6.0), with 100 mM NaCl. The spectra reveal that G7-18NATE exists in two distinguishable conformational states on the NMR timescale, most likely due to cis-trans proline isomerization. In addition, the chemical shift data are consistent with a tendency of G7-18NATE to form a turn about the YDN motif, known to be important for binding, and suggest that this turn is stabilized in low salt and low pH conditions. Low NH temperature coefficients of Tyr-5 and Asn-7 amide protons may reflect their involvement in the formation of hydrogen bonds that stabilize such a turn. Overall, however, the peptide does not form a rigid structure, but exists in a highly flexible state in solution. Averaged 3JNH-H coupling constants and a lack of interresidue NOEs are characteristic of such peptide solution behavior. This suggests that there is scope for increasing the rigidity of the peptide that may enhance its binding affinity and specificity for Grb7. 相似文献