首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.  相似文献   

2.
COPII-coated vesicles, first identified in yeast and later characterized in mammalian cells, mediate protein export from the endoplasmic reticulum (ER) to the Golgi apparatus within the secretory pathway. In these organisms, the mechanism of vesicle formation is well understood, but the process of soluble cargo sorting has yet to be resolved. In plants, functional complements of the COPII-dependent protein traffic machinery were identified almost a decade ago, but the selectivity of the ER export process has been subject to considerable debate. To study the selectivity of COPII-dependent protein traffic in plants, we have developed an in vivo assay in which COPII vesicle transport is disrupted at two distinct steps in the pathway. First, overexpression of the Sar1p-specific guanosine nucleotide exchange factor Sec12p was shown to result in the titration of the GTPase Sar1p, which is essential for COPII-coated vesicle formation. A second method to disrupt COPII transport at a later step in the pathway was based on coexpression of a dominant negative mutant of Sar1p (H74L), which is thought to interfere with the uncoating and subsequent membrane fusion of the vesicles because of the lack of GTPase activity. A quantitative assay to measure ER export under these conditions was achieved using the natural secretory protein barley alpha-amylase and a modified version carrying an ER retention motif. Most importantly, the manipulation of COPII transport in vivo using either of the two approaches allowed us to demonstrate that export of the ER resident protein calreticulin or the bulk flow marker phosphinothricin acetyl transferase is COPII dependent and occurs at a much higher rate than estimated previously. We also show that the instability of these proteins in post-ER compartments prevents the detection of the true rate of bulk flow using a standard secretion assay. The differences between the data on COPII transport obtained from these in vivo experiments and in vitro experiments conducted previously using yeast components are discussed.  相似文献   

3.
Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.  相似文献   

4.
The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.  相似文献   

5.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

6.
To analyze the role of coat protein type II (COPII) coat components and targeting and fusion factors in selective export from the endoplasmic reticulum (ER) and transport to the Golgi, we have developed three novel, stage-specific assays. Cargo selection can be measured using a "stage 1 cargo capture assay," in which ER microsomes are incubated in the presence of glutathione S-transferase (GST)-tagged Sar1 GTPase and purified Sec23/24 components to follow recruitment of biosynthetic cargo to prebudding complexes. This cargo recruitment assay can be followed by two sequential assays that measure separately the budding of COPII-coated vesicles from ER microsomes (stage 2) and, finally, delivery of cargo-containing vesicles to the Golgi (stage 3). We show how these assays provide a means to identify the snap receptor (SNARE) protein rBet1 as an essential component that is not required for vesicle formation, but is required for vesicle targeting and fusion during ER-to-Golgi transport. In general, these assays provide an approach to characterize the biochemical basis for the recruitment of a wide variety of biosynthetic cargo proteins to COPII vesicles and the role of different transport components in the early secretory pathway of mammalian cells.  相似文献   

7.
ER to Golgi transport requires the function of two distinct vesicle coat complexes, termed COPI (coatomer) and COPII, whose assembly is regulated by the small GTPases ADP-ribosylation factor 1 (ARF1) and Sar1, respectively. To address their individual roles in transport, we have developed a new assay using mammalian microsomes that reconstitute the formation of ER-derived vesicular carriers. Vesicles released from the ER were found to contain the cargo molecule vesicular stomatitis virus glycoprotein (VSV-G) and p58, an endogenous protein that continuously recycles between the ER and pre-Golgi intermediates. Cargo was efficiently sorted from resident ER proteins during vesicle formation in vitro. Export of VSV-G and p58 were found to be exclusively mediated by COPII. Subsequent movement of ER-derived carriers to the Golgi stack was blocked by a trans-dominant ARF1 mutant restricted to the GDP-bound state, which is known to prevent COPI recruitment. To establish the initial site of coatomer assembly after export from the ER, we immunoisolated the vesicular intermediates and tested their ability to recruit COPI. Vesicles bound coatomer in a physiological fashion requiring an ARF1-guanine nucleotide exchange activity. These results suggest that coat exchange is an early event preceding the targeting of ER-derived vesicles to pre-Golgi intermediates.  相似文献   

8.
Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPII-coated transport vesicles or instead form ER sub-domains that collect proteins for transport via non-coated carriers. To establish whether COPII-coated vesicles do exist in vivo, we developed approaches to combine quantitative immunogold labelling (to identify COPII) and three-dimensional electron tomography (to reconstruct entire membrane structures). In tomograms of both chemically fixed and high-pressure-frozen HepG2 cells, immuno-labelled COPII was found on ER-associated buds as well as on free approximately 50-nm diameter vesicles. In addition, we identified a novel type of COPII-coated structure that consists of partially COPII-coated, 150-200-nm long, dumb-bell-shaped tubules. Both COPII-coated carriers also contain the SNARE protein Sec22b, which is necessary for downstream fusion events. Our studies unambiguously establish the existence of free, bona fide COPII-coated transport carriers at the ER-Golgi interface, suggesting that assembly of COPII coats in vivo can result in vesicle formation.  相似文献   

9.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

10.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

11.
Sato K  Nakano A 《FEBS letters》2007,581(11):2076-2082
The evolutionarily conserved coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). COPII coat is responsible for direct capture of cargo proteins and for the physical deformation of the ER membrane that drives the COPII vesicle formation. In addition to coat proteins, recent data have indicated that the Ras-like small GTPase Sar1 plays multiple roles, such as COPII coat recruitment, cargo sorting, and completion of the final fission. In the present review, we summarize current knowledge of COPII-mediated vesicle formation from the ER, as well as highlighting non-canonical roles of COPII components.  相似文献   

12.
In addition to its role in forming vesicles from the endoplasmic reticulum (ER), the coat protein complex II (COPII) is also responsible for selecting specific cargo proteins to be packaged into COPII transport vesicles. Comparison of COPII vesicle formation in mammalian systems and in yeast suggested that the former uses more elaborate mechanisms for cargo recognition, presumably to cope with a significantly expanded repertoire of cargo that transits the secretory pathway. Using proTGFα, the transmembrane precursor of transforming growth factor α (TGFα), as a model cargo protein, we demonstrate in cell-free assays that at least one auxiliary cytosolic factor is specifically required for the efficient packaging of proTGFα into COPII vesicles. Using a knockout HeLa cell line generated by CRISPR/Cas9, we provide functional evidence showing that a transmembrane protein, Cornichon-1 (CNIH), acts as a cargo receptor of proTGFα. We show that both CNIH and the auxiliary cytosolic factor(s) are required for efficient recruitment of proTGFα to the COPII coat in vitro. Moreover, we provide evidence that the recruitment of cargo protein by the COPII coat precedes and may be distinct from subsequent cargo packaging into COPII vesicles.  相似文献   

13.
A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function.  相似文献   

14.
In eukaryotic cells, the endoplasmic reticulum (ER) is a major site of synthesis of both lipids and proteins, many of which must be transported to other organelles. The COPII coat-comprising Sar1, Sec23/24, Sec13/31-generates transport vesicles that mediate the bulk of protein/lipid export from the ER. The coat exhibits remarkable flexibility in its ability to specifically select and accommodate a large number of cargoes with diverse properties. In this review, we discuss the fundamentals of COPII vesicle production and describe recent advances that further our understanding of just how flexible COPII cargo recruitment and vesicle formation may be. Large or bulky cargo molecules (e.g. collagen rods and lipoprotein particles) exceed the canonical size for COPII vesicles and seem to rely on the additional action of recently identified accessory molecules. Although the bulk of the research has focused on the fate of protein cargo, the mechanisms and regulation of lipid transport are equally critical to cellular survival. From their site of synthesis in the ER, phospholipids, sphingolipids and sterols exit the ER, either accompanying cargo in vesicles or directly across the cytoplasm shielded by lipid-transfer proteins. Finally, we highlight the current challenges to the field in addressing the physiological regulation of COPII vesicle production and the molecular details of how diverse cargoes, both proteins and lipids, are accommodated. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

15.
Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.  相似文献   

16.
Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23–24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec23–24 complex or the monomeric Sec23 subunit were found to be the minimal cytosolic components recruited to membranes after the activation of Sar1, the addition of the mammalian Sec13–31 complex is required to complete budding. To define possible protein interactions between cargo and coat components, we recruited either glutathione-S-transferase (GST)–tagged Sar1 or GST– Sec23 to ER microsomes. Subsequently, we solubilized and reisolated the tagged subunits using glutathione-Sepharose beads to probe for interactions with cargo. We find that activated Sar1 in combination with either Sec23 or the Sec23–24 complex is necessary and sufficient to recover with high efficiency the type 1 transmembrane cargo protein vesicular stomatitis virus glycoprotein in a detergent-soluble prebudding protein complex that excludes ER resident proteins. Supplementing these minimal cargo recruitment conditions with the mammalian Sec13–31 complex leads to export of the selected cargo into COPII vesicles. The ability of cargo to interact with a partial COPII coat demonstrates that these proteins initiate cargo sorting on the ER membrane before budding and establishes the role of GTPase-dependent coat recruitment in cargo selection.  相似文献   

17.
The mechanism of coat protein (COP)II vesicle fission from the endoplasmic reticulum (ER) remains unclear. Lysophospholipid acyltransferases (LPATs) catalyze the conversion of various lysophospholipids to phospholipids, a process that can promote spontaneous changes in membrane curvature. Here, we show that 2,2-methyl- N -(2,4,6,-trimethoxyphenyl)dodecanamide (CI-976), a potent LPAT inhibitor, reversibly inhibited export from the ER in vivo and the formation of COPII vesicles in vitro . Moreover, CI-976 caused the rapid and reversible accumulation of cargo at ER exit sites (ERESs) containing the COPII coat components Sec23/24 and Sec13/31 and a marked enhancement of Sar1p-mediated tubule formation from ERESs, suggesting that CI-976 inhibits the fission of assembled COPII budding elements. These results identify a small molecule inhibitor of a very late step in COPII vesicle formation, consistent with fission inhibition, and demonstrate that this step is likely facilitated by an ER-associated LPAT.  相似文献   

18.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

19.
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.  相似文献   

20.
Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium‐binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47–Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号