首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel electrochemical immunosensor for ultrasensitive detection of subgroup J of avian leukosis virus (ALVs-J) was designed by using graphene sheets (GS)-layered double hydroxides (LDHs) composites modified electrode with multifunctional Fe(3)O(4) core/Ni-Al LDHs shell (LDHs@Fe(3)O(4)) nanospheres as labels. At first, the GS-LDHs were used for the immunosensor platform for improving the electronic transmission rate as well as increasing the surface area to capture a large amount of primary antibodies (Ab(1)). After that, ferrocene (Fc), secondary antibodies (Ab(2)) and horseradish peroxidase (HRP) multifunctional LDHs@Fe(3)O(4) nanospheres were used as labels with high load amount and good biological activity. Subsequently, in presence of H(2)O(2), amplified signals were obtained by an electrochemical sandwich immunoassay protocol. To embody the signal amplification property of the protocol, the analytical properties of various immunosensor platform and labels were compared in detail. Under optimal conditions, the reduction peak currents of the electrochemical immunosensor were proportional to the ALVs-J concentration over the range from 10(2.32) to 10(5.50) TCID(50)/mL with a low detection limit (180 TCID(50)/mL, S/N=3). The resulting immunosensor also displayed a good selectivity, reproducibility and stability.  相似文献   

2.
Fe(3)O(4) magnetic nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a simple coprecipitation procedure. The resulting Fe(3)O(4)/MWCNTs nanocomposite brings new capabilities for electrochemical sensing by combining the advantages of Fe(3)O(4) magnetic nanoparticles and MWCNTs. It was found that Fe(3)O(4) has redox properties similar to those of frequently used mediators used for electron transfer between NADH and electrode. The cyclic voltammetric results indicated the ability of Fe(3)O(4)/MWCNTs modified GC electrode to catalyze the oxidation of NADH at a very low potential (0.0 mV vs. Ag/AgCl) and subsequently, a substantial decrease in the overpotential by about 650 mV compared with the bare GC electrode. The catalytic oxidation current allows the stable and selective amperometric detection of NADH at an applied potential of 0.0 mV (Ag/AgCl) with a detection limit of 0.3 μM and linear response up to 300 μM. This modified electrode can be used as an efficient transducer in the design of biosensors based on coupled dehydrogenase enzymes. Lactate dehydrogenase (LDH) and NAD(+) were subsequently immobilized onto the Fe(3)O(4)/MWCNTs nanocomposite film by covalent bond formation between the amine groups of enzyme or NAD(+) and the carboxylic acid groups of the Fe(3)O(4)/MWCNT film. Differential pulse voltammetric detection of lactate on Fe(3)O(4)/MWCNT/LDH/NAD(+) modified GC electrode gives linear responses over the concentration range of 50-500 μM with the detection limit of 5 μM and sensitivity of 7.67 μA mM(-1). Furthermore, the applicability of the sensor for the analysis of lactate concentration in human serum samples has been successfully demonstrated.  相似文献   

3.
A sensitive label-free electrochemical immunosensing platform was designed by a redox matrix of gold nanoparticles (GNPs), Azure І and multi-wall carbon nanotubes (MWCNT) self-assemblying nanocomposite. To construct the immunosensor, MWCNT was first dispersed in Nafion (Nf) to obtain a homogeneous solution and then it was dropped on the surface of the gold electrode (Au). Then the positively-charged redox molecule, Azure І, was entrapped into MWCNT–Nf film to form a redox nanostructural membrane. Next, the negatively charged gold nanoparticles (GNPs) were assembled to the interface through the electrostatic force. Finally, carcinoembryonic antibody molecules could be absorbed into the GNPs/Azure І/MWCNT–Nf immobilization matrix. Using carcinoembryonic antigen (CEA) as a model protein, the electrochemical immunosensor exhibited good stability and reproducibility, as well as good selectivity and storage stability. This strategy presented a promising platform for sensitive and facile monitoring of CEA.  相似文献   

4.
A highly hydrophobic and non-toxic colloidal silica nanoparticle/polyvinyl butyral sol–gel composite membrane was prepared on a platinum wire electrode. With diphtheria-toxoid (D-Ag) as a model antigen and encapsulation of diphtheria antibody (D-Ab) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. It displayed a porous and homogeneous composite architecture without the aggregation of the immobilized protein molecules. The formation of immunoconjugate by a simple one-step immunoreaction between D-Ag in sample solution and the immobilized D-Ab introduced the change in the potential. Under optimal conditions, the D-Ag analyte could be determined in the linear ranges from 10 to 800 ng ml−1 with a relatively low detection limit of 2.3 ng ml−1 at 3δ. The D-Ag immunosensor exhibited good precision, high sensitivity, acceptable stability, accuracy, and reproducibility. This composite membrane could be used efficiently for the entrapment of different biomarkers and clinical applications.  相似文献   

5.
A novel third-generation biosensor for hydrogen peroxide (H2O2) has been constructed based on horseradish peroxidase (HRP) immobilized by the sol–gel (SG) technology on carbon nanotube (CNT)-modified electrode. CNT has good promotion effects on the direct electron transfer between HRP and the electrode surface and the SG network provides a biocompatible microenvironment for enzyme. The immobilized HRP retained its bioelectrocatalytic activity for the reduction of hydrogen peroxide and can respond to the change of concentration of H2O2 rapidly. The heterogeneous electron transfer rate constant was evaluated to be 2.8 ± 0.4 s−1. The amperometric response to H2O2 shows a linear relation in the range from 0.5 to 300 μmol l−1 and a detection limit of 0.1 μmol l−1 (S/N = 3). The K Mapp value of HRP immobilized on the electrode surface was found to be 1.35 mmol l−1. The biosensor exhibited high sensitivity, rapid response and excellent long-term stability.  相似文献   

6.
In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis.  相似文献   

7.
The wide-range transformation/expression platform, Xplor®2, was employed for the assessment of Schwanniomyces occidentalis as a potential producer of the recombinant proteins human IFNα2a (IFNα2a) and S. occidentalis fructofuranosidase (SFfase), and its efficiency was compared to that of Arxula adeninivorans. ADE2 and URA3 genes from both yeast species were isolated, characterized and used as selection markers in combination with the IFNα2a and SFfase expression modules, which used the strong constitutive A. adeninivorans-derived TEF1 promoter. Yeast rDNA integrative expression cassettes and yeast integrative expression cassettes equipped with a selection marker and expression modules were transformed into auxotrophic S. occidentalis and A. adeninivorans strains and a quantitative comparison of the expression efficiency was made. Whilst IFNα2a was mainly accumulated extracellularly (>95 %) in A. adeninivorans, extracellular SFfase (>90 %) was detected in both yeast species. The DNA composition of the selection marker modules and expression modules, especially their open reading frame codon usage, affects auxotrophy recovery as well as protein expression. Auxotrophy recovery was only achieved with selection marker modules of the homologous gene donor yeast. The concentration of recombinant IFNα2a was fivefold higher in A. adeninivorans (1 mg?L?1), whereas S. occidentalis accumulated 1.5- to 2-fold more SFfase (0.5 Units ml?1). These results demonstrate the extension of the use of the wide-range expression platform Xplor®2 to another yeast species of biotechnological interest.  相似文献   

8.
[AuCl4] was initially deposited by electrochemical reduction on a glassy carbon electrode (GCE) to form porous nanogold layer, then prussian blue (PB) was electrodeposited onto the as-prepared nanogold layer, and then secondary nanogold particles were fabricated again on the PB surface by electrochemical reduction for the immobilization of anti-CEA antibodies. The presence of double-layer porous gold nanoparticles enhanced the immobilized amount of biomolecules, and improved the sensitivity of the immunoassay. PB, as a good redox probe, was facile to electrochemical analysis and measurement. Under optimal conditions, the developed immunoassay exhibited dynamic range from 3.0 to 80.0 ng/mL with a detection limit of 0.9 ng/mL CEA (S/N = 3). Moreover, the selectivity, reproducibility and stability of the immunosensor were acceptable.  相似文献   

9.
The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun''s azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees.  相似文献   

10.
Syntheses and evaluation of fluoroalkylated ciprofloxacin analogues are described. Among these analogues, N?'-3-fluoropropylciprofloxacin (16) showed the most efficient antibacterial activity against E. coli strains (DH5α and TOP10) and a high binding affinity for DNA gyrase of bacteria. To develop bacteria-specific infection imaging agents for positron emission tomography (PET), no-carrier-added N?-3-[1?F]fluoropropylciprofloxacin ([1?F]16) was prepared in two steps from N?-3-methanesufonyloxypropylciprofloxacin, resulting in a 40% radiochemical yield (decay corrected for 100 min) via the tert-alcohol media radiofluorination protocol with high radiochemical purity (> 99%) as well as high specific activity (149 ± 75 GBq/μmol). The agent was stable (> 90%), as shown by an in vitro human serum stability assay. A bacterial uptake and blocking study of [1?F]16 using authentic compound 16 in TOP10 cells demonstrated its high specific bacterial uptake. The results suggest that this radiotracer holds promise as a useful bacterial infection radiopharmaceutical for PET imaging.  相似文献   

11.
T Franz  X Li 《Proteomics》2012,12(15-16):2487-2492
Separation or prefractionation of proteins by gel electrophoresis, followed by in-gel proteolytic digest and analysis by MS is a typical standard application in proteomics. For many laboratories, it is not cost-effective to use a robot with all its drawbacks. On the other hand, manual digest is time consuming and not free of error if many samples are processed at the same time. The OASIS? HLB μElution plate allows the handling of 96 samples for protein in-gel digest and peptide desalting in a semiautomatic way. Using multichannel pipettes, solutions are added quickly, and with the use of the positive pressure-96 stand all solutions are removed simultaneously. In this article, a complete and detailed protocol for the use of the OASIS? HLB μElution plate is introduced and its effectiveness is shown with 2D- and 1D-gel samples.  相似文献   

12.
《Biotechnology advances》2019,37(6):107378
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as ‘non-fermentable’ for the yeast S. cerevisiae.  相似文献   

13.
A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu–CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu–CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton–Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu–CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05–100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu–CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.  相似文献   

14.
The noncoagulative type of pellet formation can be induced in submerged cultivation of the filamentous fungus Rhizopus nigricans. The size and constitution of the hyphal agglomerates obtained varied with changes in inoculum size and agitation speed for given media composition and cultivation conditions. The physiological state of mycelium, used for a further process of biotransformation, was estimated by following the growth kinetics, pH value and substrate utilization during submerged cultivation. Namely, differences in pellet morphology and physiology affect the ability of R. nigricans to hydroxylate progesterone at the 11α position. A repeated batch procedure revealed the best maintenance of biotransformation capacity for pellets, obtained from the growth phase of cultivation at high agitation speed and with low inoculum size.  相似文献   

15.
Recently, a new type of haematite-based (a-Fe2O3) photoanode has achieved a considerable catalytic performance through simply depositing Ag and cobalt phosphate (Co–Pi) nanoparticles (NPs) onto haematite nanosheets. However, there is no detailed mechanism study on the reason for high-performance catalysis. In view of this, we conduct first-principles calculations and our results indicate that there is a further accumulation of positive charge on Ag NPs on the heterogeneous interfaces with the addition of Co–Pi NPs than that of haematite modified only by Ag NPs. Also, there is a slight increase of the adsorption energy of water molecules.  相似文献   

16.
Aptamers are short single-stranded nucleic acids with high affinity to target molecules and are applicable to therapeutics and diagnostics. Regardless of an increasing number of reported aptamers, the structural basis of the interaction of RNA aptamer with proteins is poorly understood. Here, we determined the 2.15 Å crystal structure of the Fc fragment of human IgG1 (hFc1) complexed with an anti-Fc RNA aptamer. The aptamer adopts a characteristic structure fit to hFc1 that is stabilized by a calcium ion, and the binding activity of the aptamer can be controlled many times by calcium chelation and addition. Importantly, the aptamer–hFc1 interaction involves mainly van der Waals contacts and hydrogen bonds rather than electrostatic forces, in contrast to other known aptamer–protein complexes. Moreover, the aptamer–hFc1 interaction involves human IgG-specific amino acids, rendering the aptamer specific to human IgGs, and not crossreactive to other species IgGs. Hence, the aptamer is a potent alternative for protein A affinity purification of Fc-fusion proteins and therapeutic antibodies. These results demonstrate, from a structural viewpoint, that conformational plasticity and selectivity of an RNA aptamer is achieved by multiple interactions other than electrostatic forces, which is applicable to many protein targets of low or no affinity to nucleic acids.  相似文献   

17.
Monosuccinyl β-cyclodextrin (succinyl-β-CD) was synthesized and the selectivity to quercetin and rutin of the succinyl-β-CD-modified, multi-wall carbon nanotube (MWNT)-coated, glassy carbon electrode [(succinyl-β-CD + MWNT)/GCE] was investigated. 1H NMR and MALDI-MS data confirmed molecular structure of the synthesized succinyl-β-CD. As a dopant in carboxylated MWNT-modified electrode, succinyl-β-CD clearly separated the peak potential (Ep) of quercetin from that of rutin. The measured peak potential separation (ΔEp) was 110 mV. More favorable complexation between succinyl-β-CD and quercetin may enhance relative selectivity to quercetin of the (succinyl-β-CD + MWNT)/GCE in quercetin-rutin mixture as compared to the β-CD-modified GCE.  相似文献   

18.
Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4–1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3–3, 26–58 and 124–568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Kml-Cth of E333 substitution variants is increased ~ 17-fold, while Kml-OAS is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Kml-OSHS = 7 ± 2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Kml-Cth = 2100 ± 100) and 260-fold higher than that of l-Hcys (kcat/Kml-Hcys = 0.027 ± 0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.  相似文献   

19.

Background

Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrading bacterium Pseudomonas sp. GO2.

Results

Pseudomonas sp. GO2 showed excellent production ability of bioflocculants through directly hydrolyzing various biomasses. The untreated corn stover was selected as carbon source for bioflocculants’ production due to its highest flocculating efficiency compared to that when using other biomasses as carbon source. The effects of fermentation parameters on bioflocculants’ production were optimized via response surface methodology. According to the optimal model, an ideal flocculating efficiency of 99.8% was obtained with the fermentation time of 130.46 h, initial pH of 7.46, and biomass content of 0.64%. The relative importance of carboxymethyl cellulase and xylanase accounted for 51.8% in the process of bioflocculants’ production by boosted regression tree analysis, further indicating that the bioflocculants were mainly from the hydrolysates of biomass. Biochemical analysis showed that it contained 59.0% polysaccharides with uronic acid (34.2%), 32.1% protein, and 6.1% nucleic acid in the bioflocculants, which had an average molecular weight as 1.33 × 106 Da. In addition, the bioflocculants showed the highest flocculating efficiency at a concentration of 12.5 mg L?1 and were stable over broad ranges of pH and temperature. The highest flocculating efficiencies obtained for Chlorella zofingiensis and Neochloris oleoabundans were 77.9 and 88.9%, respectively.

Conclusions

The results indicated that Pseudomonas sp. GO2 can directly utilize various untreated lignocellulolytic biomasses to produce low-cost bioflocculants, which showed the high efficiency to harvest two green microalgae in a low GO2 fermentation broth/algal culture ratio.
  相似文献   

20.
《Free radical research》2013,47(3):127-137
The aim of the present study was to elucidate the role of mitochondria in the development of heart failure following ischemia/reperfusion. Although mitochondria were increasingly assumed to be responsible for the establishment of an oxidative stress situation the lack of suitable methods to prove it required new concepts for an evaluation of the validity of this hypothesis. The principal idea was to expose isolated mitochondria to metabolic conditions which are developed during ischemia/reperfusion in the cell (anoxia, lactogenesis) and study how they respond. Heart mitochondria treated in that way responded with an incomplete collaps of the transmembraneous proton gradient, thereby impairing respiration-linked ATP generation. The membrane effect affected also the proper control of e? transfer through redox-cycling ubisemiquinone. Electrons were found to leak at this site from its normal pathway to O2? suggesting that ubisemiquinone becomes an active O2? generator. It was concluded from these observations that mitochondria are likely to play a pathogenetic role in the reperfusion injury of the heart both, by an impairment of energy conservation and their transition to a potent O2?-radical generator. Furthermore, there is considerable evidence that the exogenous NADH-dehydrogenase of heart mitochondria is mainly responsible for functional changes of these organelles during ischemia/reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号