首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both pharmacophore models of the human ether-à-go-go-related gene (hERG) channel blockers and phospholipidosis (PLD) inducers contain a hydrophobic moiety and a hydrophilic motif/positively charged center, so it is interesting to investigate the overlap between the ligand chemical spaces of both targets. We have assayed over 4000 non-redundant drug-like compounds for both their hERG inhibitory activity and PLD inducing potential in a quantitative high throughput screening (qHTS) format. Seventy-seven percent of PLD inducing compounds identified from the screening were also found to be hERG channel blockers, and 96.9% of the dually active compounds were positively charged. Among the 48 compounds that induced PLD without inhibiting hERG channel, 24 compounds (50.0%) carried steroidal structures. According to our results, hERG channel blockers and PLD inducers share a large chemical space. In addition, a positively charged hERG channel blocker will most likely induce PLD, while a steroid PLD inducer is less likely a hERG channel blocker.  相似文献   

2.
The most common cause for adverse cardiac events by antidepressants is acquired long QT syndrome (acLQTS), which produces electrocardiographic abnormalities that have been associated with syncope, torsade de pointes arrhythmias, and sudden cardiac death. acLQTS is often caused by direct block of the cardiac potassium current I(Kr)/hERG, which is crucial for terminal repolarization in human heart. Importantly, desipramine belongs to a group of tricyclic antidepressant compounds that can simultaneously block hERG and inhibit its surface expression. Although up to 40% of all hERG blockers exert combined hERG block and trafficking inhibition, few of these compounds have been fully characterized at the cellular level. Here, we have studied in detail how desipramine inhibits hERG surface expression. We find a previously unrecognized combination of two entirely different mechanisms; desipramine increases hERG endocytosis and degradation as a consequence of drug-induced channel ubiquitination and simultaneously inhibits hERG forward trafficking from the endoplasmic reticulum. This unique combination of cellular effects in conjunction with acute channel block may explain why tricyclic antidepressants as a compound class are notorious for their association with arrhythmias and sudden cardiac death. Taken together, we describe the first example of drug-induced channel ubiquitination and degradation. Our data are directly relevant to the cardiac safety of not only tricyclic antidepressants but also other therapeutic compounds that exert multiple effects on hERG, as hERG trafficking and degradation phenotypes may go undetected in most preclinical safety assays designed to screen for acLQTS.  相似文献   

3.
Physicochemical features of the HERG channel drug binding site   总被引:4,自引:0,他引:4  
Blockade of hERG K(+) channels in the heart is an unintentional side effect of many drugs and can induce cardiac arrhythmia and sudden death. It has become common practice in the past few years to screen compounds for hERG channel activity early during the drug discovery process. Understanding the molecular basis of drug binding to hERG is crucial for the rational design of medications devoid of this activity. We previously identified 2 aromatic residues, Tyr-652 and Phe-656, located in the S6 domain of hERG, as critical sites of interaction with structurally diverse drugs. Here, Tyr-652 and Phe-656 were systematically mutated to different residues to determine how the physicochemical properties of the amino acid side group affected channel block by cisapride, terfenadine, and MK-499. The potency for block by all three drugs was well correlated with measures of hydrophobicity, especially the two-dimensional approximation of the van der Waals hydrophobic surface area of the side chain of residue 656. For residue 652, an aromatic side group was essential for high affinity block, suggesting the importance of a cation-pi interaction between Tyr-652 and the basic tertiary nitrogen of these drugs. hERG also lacks a Pro-Val-Pro motif common to the S6 domain of most other voltage-gated K(+) channels. Introduction of Pro-Val-Pro into hERG reduced sensitivity to drugs but also altered channel gating. Together, these findings assign specific residues to receptor fields predicted by pharmacophore models of hERG channel blockers and provide a refined molecular understanding of the drug binding site.  相似文献   

4.
Numerous structurally and functionally unrelated drugs block the hERG potassium channel. HERG channels are involved in cardiac action potential repolarization, and reduced function of hERG lengthens ventricular action potentials, prolongs the QT interval in an electrocardiogram, and increases the risk for potentially fatal ventricular arrhythmias. In order to reduce the risk of investing resources in a drug candidate that fails preclinical safety studies because of QT prolongation, it is important to screen compounds for activity on hERG channels early in the lead optimization process. A number of hERG assays are available, ranging from high throughput binding assays on stably expressed recombinant channels to very time consuming electrophysiological examinations in cardiac myocytes. Depending on the number of compounds to be tested, binding assays or functional assays measuring membrane potential or Rb+ flux, combined with electrophysiology on a few compounds, can be used to efficiently develop the structure-function relationship of hERG interactions.  相似文献   

5.
Numerous structurally and functionally unrelated drugs block the hERG potassium channel. HERG channels are involved in cardiac action potential repolarization, and reduced function of hERG lengthens ventricular action potentials, prolongs the QT interval in an electrocardiogram, and increases the risk for potentially fatal ventricular arrhythmias. In order to reduce the risk of investing resources in a drug candidate that fails preclinical safety studies because of QT prolongation, it is important to screen compounds for activity on hERG channels early in the lead optimization process. A number of hERG assays are available, ranging from high throughput binding assays on stably expressed recombinant channels to very time consuming electrophysiological examinations in cardiac myocytes. Depending on the number of compounds to be tested, binding assays or functional assays measuring membrane potential or Rb(+) flux, combined with electrophysiology on a few compounds, can be used to efficiently develop the structure-function relationship of hERG interactions.  相似文献   

6.
Several commercially available pharmaceutical compounds have been shown to block the IKr current of the cardiac action potential. This effect can cause a prolongation of the electrocardiogram QT interval and a delay in ventricular repolarization. The Food and Drug Administration recommends that all new potential drug candidates be assessed for IKr block to avoid a potentially lethal cardiac arrhythmia known as torsades de pointes. Direct compound interaction with the human ether-a-go-go- related gene (hERG) product, a delayed rectifier potassium channel, has been identified as a molecular mechanism of IKr block. One strategy to identify compounds with hERG liability is to monitor hERG current inhibition using electrophysiology techniques. The authors describe the Ion Works HT instrument as a tool for screening cell lines expressing hERG channels. Based on current amplitude and stability criteria, a cell line was selected and used to perform a 300-compound screen. The screen was able to identify compounds with hERG activity within projects that spanned different therapeutic areas. The cell line selection and optimization, as well as the screening abilities of the Ion Works HT system, provide a powerful means of assessing hERGactive compounds early in the drug discovery pipeline.  相似文献   

7.
Nifekalant and azimilide, Class III antiarrhythmic agents, block the human ether-à-go-go-related gene K+ (hERG) channel. However, when a depolarizing membrane potential is applied, they also increase the current at low potentials by shifting its activation curve towards hyperpolarizing voltages. This phenomenon is called ‘facilitation’. In this study, we tried to address the mechanism underlying the facilitation by analyzing the effects of various compounds on hERG expressed in Xenopus oocytes. Like nifekalant, amiodarone, quinidine and carvedilol, but not by dofetilide, caused the current facilitation of hERG, suggesting that the facilitation is a common effect to a subset of hERG blockers. As the concentration of each compound was increased, the total hERG current was suppressed progressively, while the current at low potentials was augmented. Activation curves of the remaining hERG current in the facilitation condition could be described as the sum of two Boltzmann functions reflecting two populations of hERG currents having different activation curves. The voltage shift in the activation curve from control was constant for each compound even at different concentrations; −31 mV in amiodarone, −27 mV in nifekalant, −17 mV in quinidine and −12 mV in carvedilol. Therefore, the facilitation is based on the appearance of hERG whose voltage-dependence for the activation is shifted towards hyperpolarizing voltages.  相似文献   

8.
Human Ether-à-go-go (hERG) channels contribute to cardiac repolarization, and inherited variants or drug block are associated with long QT syndrome type 2 (LQTS2) and arrhythmia. Therefore, hERG activator compounds present a therapeutic opportunity for targeted treatment of LQTS. However, a limiting concern is over-activation of hERG resurgent current during the action potential and abbreviated repolarization. Activators that slow deactivation gating (type I), such as RPR260243, may enhance repolarizing hERG current during the refractory period, thus ameliorating arrhythmogenicity with reduced early repolarization risk. Here, we show that, at physiological temperature, RPR260243 enhances hERG channel repolarizing currents conducted in the refractory period in response to premature depolarizations. This occurs with little effect on the resurgent hERG current during the action potential. The effects of RPR260243 were particularly evident in LQTS2-associated R56Q mutant channels, whereby RPR260243 restored WT-like repolarizing drive in the early refractory period and diastolic interval, combating attenuated protective currents. In silico kinetic modeling of channel gating predicted little effect of the R56Q mutation on hERG current conducted during the action potential and a reduced repolarizing protection against afterdepolarizations in the refractory period and diastolic interval, particularly at higher pacing rates. These simulations predicted partial rescue from the arrhythmic effects of R56Q by RPR260243 without risk of early repolarization. Our findings demonstrate that the pathogenicity of some hERG variants may result from reduced repolarizing protection during the refractory period and diastolic interval with limited effect on action potential duration, and that the hERG channel activator RPR260243 may provide targeted antiarrhythmic potential in these cases.  相似文献   

9.
A new series of voltage-gated sodium channel blockers with potential for treatment of chronic pain is reported. Systematic structure-activity relationship studies, starting with compound 1, led to identification of potent analogs that displayed use-dependent block of sodium channels, were efficacious in pain models in vivo, and most importantly, were devoid of activity against the cardiac potassium channel hERG.  相似文献   

10.
State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.  相似文献   

11.
The phenothiazine antipsychotic agent thioridazine has been linked with prolongation of the QT interval on the electrocardiogram, ventricular arrhythmias, and sudden death. Although thioridazine is known to inhibit cardiac hERG K(+) channels there is little mechanistic information on this action. We have investigated in detail hERG K(+) channel current (I(hERG)) blockade by thioridazine and identified a key molecular determinant of blockade. Whole-cell I(hERG) measurements were made at 37 degrees C from human embryonic kidney (HEK-293) cells expressing wild-type and mutant hERG channels. Thioridazine inhibited I(hERG) tails at -40mV following a 2s depolarization to +20mV with an IC(50) value of 80nM. Comparable levels of I(hERG) inhibition were seen with physiological command waveforms (ventricular and Purkinje fibre action potentials). Thioridazine block of I(hERG) was only weakly voltage-dependent, though the time dependence of I(hERG) inhibition indicated contingency of blockade upon channel gating. The S6 helix point mutation F656A almost completely abolished, and the Y652A mutation partially attenuated, I(hERG) inhibition by thioridazine. In summary, thioridazine is one of the most potent hERG K(+) channel blockers amongst antipsychotics, exhibiting characteristics of a preferential open/activated channel blocker and binding at a high affinity site in the hERG channel pore.  相似文献   

12.
Desipramine is a tricyclic antidepressant for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. Since blockade of cardiac human ether-a-go-go-related gene (hERG) channels is an important cause of acquired long QT syndrome, we investigated the acute effects of desipramine on hERG channels to determine the electrophysiological basis for its pro-arrhythmic potential. We examined the effects of desipramine on the hERG channels expressed in Xenopus oocytes using two-microelectrode voltage-clamp techniques. Desipramine-induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The IC50 for desipramine needed to block the hERG current in Xenopus oocytes decreased progressively relative to the degree of depolarization. Desipramine affected the channels in the activated and inactivated states but not in the closed states. The S6 domain mutations, Tyr-652 located in the S6 domain of the hERG channel reduced the potency of the channel block by desipramine more than a mutation of Phe-656 in the same region. These results suggest that desipramine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects during the clinical administration of desipramine.  相似文献   

13.
9-Aminoacridine and tacrine differ from other channel blockers of NMDA receptors in that their binding prevents the closing of blocked channels and subsequent dissociation of the agonist. Structural determinants of aminoacridine derivatives underlying the blocking mechanism are still unknown. The aim of this study was to elucidate the effects of a dicationic 9-aminoacridine derivative and some other tricyclic compounds on NMDA receptors of rat hippocampal pyramidal neurons. All the compounds under study are voltage-dependent blockers of NMDA channels; their IC50 values recorded at −80 mV vary from 1 to 50 μM. The dicationic derivatives demonstrate the same voltage dependence of the block as the monocationic derivatives. The monoand dicationic tricyclic compounds under study are weak blockers of AMPA receptor channels and differ from adamantane, phenylcyclohexyl and other dicationic derivatives that exhibit greater voltage dependence of the NMDA channel block and are able to induce effective suppression of AMPA channels. We conclude that the mechanisms of action of the tricyclic and dicationic 9-aminoacridine derivatives are different from that of 9-aminoacridine, since these compounds do not prevent closing of the blocked channels. This suggests that the binding site for 9-aminoacridine has specific properties and high selectivity with respect to ligand structure. Original Russian Text ? K.H. Kim, V.E. Gmiro, D.B. Tikhonov, L.G. Magazanik, 2007, published in Biologicheskie Membrany, 2007, Vol. 24, No. 1, pp. 96–104.  相似文献   

14.
We have studied the action of several pore-blocking amines on voltage-dependent activation gating of batrachotoxin(BTX)-activated sodium channels, from bovine heart and rat skeletal muscle, incorporated into planar lipid bilayers. Although structurally simpler, the compounds studied show general structural features and channel-inhibiting actions that resemble those of lidocaine. When applied to the cytoplasmic end of the channel, these compounds cause a rapid, voltage-dependent, open-channel block seen as a reduction in apparent single-channel amplitude (companion paper). Internal application of phenylpropanolamine, phenylethylamine, phenylmethylamine, and diethylamine, as well as causing open-channel block, reduces the probability of channel closure, producing a shift of the steady-state activation curve toward more hyperpolarizing potentials. These gating effects were observed for both cardiac and skeletal muscle channels and were not evoked by addition of equimolar N-Methyl-D-Glucamine, suggesting a specific interaction of the blockers with the channel rather than a surface charge effect. Kinetic analysis of phenylpropanolamine action on skeletal muscle channels indicated that phenylpropanolamine reduced the closed probability via two separate mechanisms. First, mean closed durations were slightly abbreviated in its presence. Second, and more important, the frequency of the gating closures was reduced. This action was correlated with the degree, and the voltage dependence, of open-channel block, suggesting that the activation gate cannot close while the pore is occluded by the blocker. Such a mechanism might underlie the previously reported immobilization of gating charge associated with local anesthetic block of unmodified sodium channels.  相似文献   

15.
The hERG potassium channel is of major pharmaceutical importance, and its blockade by various compounds, potentially causing serious cardiac side effects, is a major problem in drug development. Despite the large amounts of existing biochemical data on blockade of hERG by drugs and druglike compounds, relatively little is known regarding the structural basis of binding of blockers to the channel. Here, we have used a recently developed homology model of hERG to conduct molecular docking experiments with a series of channel blockers, followed by molecular dynamics simulations of the complexes and evaluation of binding free energies with the linear interaction energy method. The calculations yield a remarkably good agreement with experimental binding affinities and allow for a rationalization of three-dimensional structure-activity relationships in terms of a number of key interactions. Two main interaction regions of the channel are thus identified with implications for further mutagenesis experiments and design of new compounds.  相似文献   

16.
Blockade of the hERG K+ channel has been identified as the most important mechanism of QT interval prolongation and thus inducing cardiac risk. In this work, an ensemble of 3D-QSAR pharmacophore models was constructed to provide insight into the determinants of the interactions between the hERG K+ channel and channel inhibitors. To predict hERG inhibitory activities, the predicted values from the ensemble of models were averaged, and the results thus obtained showed that the predictive ability of the combined 3D-QSAR pharmacophore model was greater that those of the individual models. Also, using the same training and test sets, a 2D-QSAR model based on a heuristic machine-learning method was developed in order to analyze the physicochemical characters of hERG inhibitors. The models indicated that the inhibitors have certain key inhibitory features in common, including hydrophobicity, aromaticity, and flexibility. A final model was developed by combining the combined 3D-QSAR pharmacophore with the 2D-QSAR model, and this final model outperformed any other individual model, showing the highest predictive ability and the lowest deviation. This model can not only predict hERG inhibitory potency accurately, thus allowing fast cardiac safety evaluation, but it provides an effective tool for avoiding hERG inhibitory liability and thus enhanced cardiac risk in the design and optimization of new chemical entities.  相似文献   

17.
During the repolarization phase of a cardiac action potential, hERG1 K+ channels rapidly recover from an inactivated state then slowly deactivate to a closed state. The resulting resurgence of outward current terminates the plateau phase and is thus a key regulator of action potential duration of cardiomyocytes. The intracellular N-terminal domain of the hERG1 subunit is required for slow deactivation of the channel as its removal accelerates deactivation 10-fold. Here we investigate the stoichiometry of hERG1 channel deactivation by characterizing the kinetic properties of concatenated tetramers containing a variable number of wild-type and mutant subunits. Three mutations known to accelerate deactivation were investigated, including R56Q and R4A/R5A in the N terminus and F656I in the S6 transmembrane segment. In all cases, a single mutant subunit induced the same rapid deactivation of a concatenated channel as that observed for homotetrameric mutant channels. We conclude that slow deactivation gating of hERG1 channels involves a concerted, fully cooperative interaction between all four wild-type channel subunits.  相似文献   

18.
Unexpected induction of arrhythmias in the heart is still one of the major risks of new drugs despite recent improvements in cardiac safety assays. Here we address this in a novel emerging assay system. Eleven reference compounds were administrated to spontaneously beating clusters of cardiomyocytes from human pluripotent stem cells (hPSC-CM) and the responses determined using multi-electrode arrays. Nine showed clear dose-dependence effects on field potential (FP) duration. Of these, the Ca2 + channel blockers caused profound shortening of action potentials, whereas the classical hERG blockers, like dofetilide and d,l-sotalol, induced prolongation, as expected.Unexpectedly, two potent blockers of the slow component of the delayed rectifier potassium current (IKs), HMR1556 and JNJ303, had only minor effects on the extracellular FP of wild-type hPSC-CM despite evidence of functional IKs channels. These compounds were therefore re-evaluated under conditions that mimicked reduced “repolarization reserve,” a parameter reflecting the capacity of cardiomyocytes to repolarize and a strong risk factor for the development of ventricular arrhythmias. Strikingly, in both pharmacological and genetic models of diminished repolarization reserve, HMR1556 and JNJ03 strongly increased the FP duration. These profound effects indicate that IKs plays an important role in limiting action potential prolongation when repolarization reserve is attenuated. The findings have important clinical implications and indicate that enhanced sensitization to repolarization-prolonging compounds through pharmacotherapy or genetic predisposition should be taken into account when assessing drug safety.  相似文献   

19.
Common clinically used drugs block the delayed rectifier K(+) channels and prolong the cardiac action potential duration associated with long QT syndrome. Here, we investigated the mechanism of hERG K(+) channel current (I(hERG)) blockade expressed in HEK-293 cells by sibutramine HCl, a serotonin-norepinephrine reuptake inhibitor. Sibutramine HCl inhibited I (hERG) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC(50)) value of 2.5 microM at -40 mV. I(hERG) inhibition by sibutramine HCl showed weak voltage dependency, but the time-dependence of I(hERG) inhibition was developed relatively rapidly on membrane depolarization. On hERG channel gating for the S6 and pore regions, the S6 residue hERG mutant Y652A and F656A largely reduced the blocking potency of I(hERG), unlike the pore-region mutants T623A and S624A. These results indicate that sibutramine HCl preferentially inhibits the hERG potassium channel through the residue Y652 and F656, in a supratherapeutic concentration should be avoided by patients with high susceptibility for cardiac arrhythmia.  相似文献   

20.
The therapeutic agents flunarizine and lomerizine exhibit inhibitory activities against a variety of ion channels and neurotransmitter receptors. We have optimized their scaffolds to obtain more selective N-type calcium channel blockers. During this optimization, we discovered NP118809 and NP078585, two potent N-type calcium channel blockers which have good selectivity over L-type calcium channels. Upon intraperitoneal administration both compounds exhibit analgesic activity in a rodent model of inflammatory pain. NP118809 further exhibits a number of favorable preclinical characteristics as they relate to overall pharmacokinetics and minimal off-target activity including the hERG potassium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号