首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
S C Chow  M Jondal 《Cell calcium》1990,11(10):641-646
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol.  相似文献   

2.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

3.
Alpha 1-adrenergic receptor (alpha 1R) mediated increases in the cytosolic levels of free Ca+2 and the inositol phosphates were measured in a smooth muscle cell line, DDT1. Norepinephrine (NE) stimulated a rapid increase in cytosolic Ca+2 by two distinct components: 1) release of Ca+2 from intracellular sites (mobilization), and 2) influx of extracellular Ca+2. The mobilization component was not affected by removal of extracellular Ca+2 or addition of La+3 or Co+2 to the buffer. The influx component was abolished by EGTA, La+3, or Co+2, but was not affected by the voltage-operated Ca+2 channel blockers diltiazem or nifedipine. Depolarization of DDT1 cells with 100 mM KCl or with gramicidin did not induce Ca+2 influx. NE also increased inositol trisphosphate to 78% over basal levels within 1 minute. These results suggest that alpha 1R on DDT1 cells are coupled to both the mobilization of intracellular Ca+2 and to receptor-operated Ca+2 channels in the plasma membrane, and that polyphosphoinositide hydrolysis may play a role in these phenomena.  相似文献   

4.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

5.
C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A2-dependent arachidonic acid liberation. Since phospholipase A2 is a Ca2+-sensitive enzyme, we have examined the role of the agonist-stimulated Ca2+ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca2+ levels ([Ca2+]i) of C62B cells following acetylcholine treatment. In the presence of extracellular Ca2+, acetylcholine induces a biphasic [Ca2+]i response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A2 response. The initial [Ca2+]i peak is not altered by the absence of external Ca2+ and therefore reflects intracellular Ca2+ mobilization. The sustained elevation phase is dependent on the influx of external Ca2+; it is lost in Ca2+-free medium and restored on the addition of Ca2+. Pretreating cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca2+]i response without affecting the sustained elevation in [Ca2+]i. This suggests that the release of internal Ca2+ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca2+ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A2 activation does not require normal intracellular Ca2+ release. Stimulated arachidonate accumulation is totally inhibited in Ca2+-free medium and restored by the subsequent addition of Ca2+. Pretreatment with verapamil, a voltage-dependent Ca2+ channel inhibitor, also blocks both the sustained [Ca2+]i elevation and arachidonate liberation without altering peak intracellular Ca2+ release. We conclude that the influx of extracellular Ca2+ is tightly coupled to phospholipase A2 activation, whereas large changes in [Ca2+]i due to mobilization of internal Ca2+ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A2 activation.  相似文献   

6.
The effects of endothelin on cellular Ca2+ mobilization were examined in cultured rat vascular smooth muscle cells (VSMC). Endothelin (10(-8)M) induced a rapid transient increase of [Ca2+]i from 77 +/- 3 to 104 +/- 5 nM (p less than .05) in VSMC. Preincubation (60 min) with endothelin (2 x 10(-6)M) increased basal [Ca2+]i from 77 +/- 3 to 105 +/- 8 nM (p less than .05). Preincubation with endothelin also enhanced vasopressin (10(-7)M)-stimulated peak levels of [Ca2+]i (528 +/- 20 nM vs 969 +/- 21 nM, p less than .01). Endothelin (10(-7)M) induced an intracellular alkalinization (7.18 +/- 0.03 vs 7.37 +/- 0.04, p less than .01) which was blocked by pretreatment with amiloride. The biphasic effects of endothelin on [Ca2+]i were similar to those of an endogenous inhibitor of Na-K-ATPase that we examined in a previous study. Therefore, we examined the effects of endothelin on Na-K-ATPase in an enzyme preparation from hog cerebral cortex. At high concentrations, endothelin (10(-5)M) inhibited Na-K-ATPase in vitro. Thus, endothelin may exert its vasoconstrictor effects at least in part via alterations of cellular Ca2+ mobilization in VSMC. While the rapid transient increase of [Ca2+]i appears to reflect intracellular Ca2+ mobilization, the sustained effect on [Ca2+]i may be related to an increase of intracellular sodium mediated by inhibition of Na-K-ATPase and/or more likely by stimulation of the Na+/H+-antiport.  相似文献   

7.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

8.
Molecular mechanism of action of the vasoconstrictor peptide endothelin   总被引:28,自引:0,他引:28  
Endothelin, one of the most potent vasoconstrictor known, has been suggested to act as an endogenous agonist of L-type Ca2+ channels. In this paper we show that endothelin stimulates the metabolism of inositol phosphates and induces the mobilization of intracellular Ca2+ stores. The transient activation of Ca2+-sensitive K+ channel provokes an hyperpolarization of the membrane. It is followed by a sustained depolarization which is due to the opening of a non-specific cation channel which is permeable to Ca2+ and Mg2+. The depolarization then activates L-type Ca2+ channels. This mechanism of action explains why part of the endothelin-induced vasocontriction is eliminated by L-type Ca2+ channel blockers.  相似文献   

9.
P Vigne  M Lazdunski  C Frelin 《FEBS letters》1989,249(2):143-146
Endothelin-1 induces a positive inotropic response in isolated left atria of the rat with an IC50 value of 20 nM. The contractile effect of endothelin is larger than that of other inotropic hormones such as phenylephrine and epinephrine and smaller than that of Bay K8644. In the spontaneously active right atria, endothelin induces a positive inotropic effect with no chronotropic effect. Endothelin does not modify intracellular levels of cAMP under basal conditions or after stimulation with isoproterenol but stimulates the formation of inositol phosphates. Mobilization of inositol phospholipids is observed in the same range of concentrations as for the contractile action of endothelin. The contractile action of endothelin is not mediated by protein kinase C. It is antagonized by blockers of L-type Ca2+ channels, low external Ca2+ concentrations and drugs such as caffeine and ryanodine that interfere with Ca2+ release by the sarcoplasmic reticulum.  相似文献   

10.
The intracellular concentration of free Ca2+ was monitored by measuring the fluorescence of fura-2 loaded Human Erythroleukemia Cells. Neuropeptide Y (NPY) increased intracellular Ca2+ in a dose-dependent manner and the 50% effective concentration was 2 nM. Chelation of extracellular Ca2+ by EGTA did not reduce the NPY-mediated increase in cytoplasmic Ca2+, indicating that the increase in fluorescence was due to the release of intracellular Ca2+. A second dose of NPY, after intracellular Ca2+ had returned to basal levels, failed to elicit a response, indicating that the NPY receptor had undergone desensitization. In similar experiments, NPY increased the formation of inositol phosphates, suggesting that the mobilization of Ca2+ from intracellular stores in HEL cells was secondary to the generation of inositol phosphates and stimulation of phospholipase C.  相似文献   

11.
12.
Effects of ATP on accumulation of inositol phosphates and Ca2+ mobilization were investigated in cultured bovine adrenal chromaffin cells. When the cells were stimulated with 30 microM ATP, a rapid and transient rise in intracellular Ca2+ concentration was observed. At the same time, ATP rapidly increased accumulation of inositol phosphates. The concentration-response curve for the ATP-induced Ca2+ mobilization was similar to that for inositol trisphosphate (IP3) accumulation. ATP exerted its maximal effects at 30 microM for either IP3 accumulation or Ca2+ mobilization. The order of the efficacy of the agonists for IP3 accumulation and Ca2+ mobilization at 100 microM was ATP greater than ADP greater than AMP approximately adenosine, AMP (100 microM) and adenosine (300 microM) failed to induce IP3 accumulation and Ca2+ mobilization. Although 100 microM GTP and 100 microM UTP also induced IP3 accumulation and Ca2+ mobilization, their efficacy was less than that of ATP. CTP (100 microM) induced a slight IP3 accumulation, but it did not induce Ca2+ mobilization. Nifedipine (10 microM), a Ca2+ channel antagonist, and theophylline (100 microM), a P1-purinergic receptor antagonist, failed to inhibit the ATP-induced IP3 accumulation and Ca2+ mobilization. The above two cellular responses induced by ATP were also observed in the Ca2+-depleted medium. ATP induced a rapid and transient accumulation of 1,4,5-IP3 (5s), followed by a slower accumulation of 1,3,4-IP3. These results suggest that ATP induces the formation of 1,4,5-IP3 through the P2-purinergic receptor and consequently promotes Ca2+ mobilization from intracellular storage sites in cultured adrenal chromaffin cells.  相似文献   

13.
Changes in the intracellular concentration of calcium [( Ca2+]i) have been shown to mediate the physiological effects of certain agonists. Ca2+ mobilization occurs through multiple mechanisms which involve both influx and internal release of Ca2+. Prostaglandin F2 alpha (PGF2 alpha) caused a transient mobilization of intracellular Ca2+ in 3T3-L1 fibroblasts. This effect was characterized by fluorescence measurements of trypsin-treated cells loaded with fura-2/AM. In the absence of extracellular Ca2+, the peak amount of Ca2+ mobilized by PGF2 alpha was decreased by 70%, a lag time before the onset of [Ca2+]i increase was observed, and the rate of rise of [Ca2+]i was slowed. Addition of NaF (10 mM) to fura-2-loaded 3T3-L1 cells caused a dose-dependent increase in [Ca2+]i after a brief (approximately 10 s) lag. Maximal effects (approximately 300 nM) were observed at 5-10 mM-NaF. This effect was dependent on the presence of extracellular Ca2+ and appeared to be independent of inositol phosphate production. After reaching a peak at around 40 s after fluoride addition, [Ca2+]i returned to near-baseline within 120 s. This return of [Ca2+]i to near-baseline after fluoride stimulation and the inability of the cells to respond to a subsequent addition of fluoride indicated that the response to fluoride underwent desensitization. Similarly, the pathway used by PGF2 alpha to mobilize Ca2+ underwent desensitization. Exposure of the cells to a maximally effective concentration of fluoride and subsequent addition of PGF2 alpha produced a [Ca2+]i response to PGF2 alpha which was similar in magnitude and kinetics to that seen for PGF2 alpha in the absence of extracellular Ca2+. Conversely, prior exposure of cells to PGF2 alpha diminished the ability of fluoride to mobilize Ca2+. PGF2 alpha also increased inositol phosphate formation, with a time course and dose-response consistent with its ability to increase [Ca2+]i. Prior exposure of cells to fluoride did not change the time course or dose-response characteristics of PGF2 alpha-induced generation of inositol phosphates. These data suggest that PGF2 alpha and fluoride share a common mechanism of activating Ca2+ influx in 3T3-L1 cells.  相似文献   

14.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with serum or a mixture of growth factors (consisting of vasopressin, bradykinin, EGF, and insulin) stimulates the release of inositol phosphates, mobilization of intracellular Ca, activation of Na/H exchange and subsequent incorporation of [3H]-thymidine. We have determined previously that pretreatment with the tumor-promoting phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA) inhibits mitogen-stimulated Na influx in HSWP cells. We report herein that TPA pretreatment also substantially inhibits the mitogen-stimulated release of inositol phosphates in HSWP cells. Half maximal inhibition of mitogen-stimulated inositol phosphate release occurs at 1-2 nM TPA. Treatment of cells with TPA alone has no effect on inositol phosphate release. The effect of TPA pretreatment on inositol phosphate release induced by individual growth factors has also been determined. Orthovanadate, reported by Cassel et al. (1984) to increase Na/H exchange in A431 cells, has been demonstrated to stimulate both Na influx and inositol phosphate release in HSWP cells. TPA pretreatment also inhibits both orthovanadate-stimulated inositol phosphate release and Na influx. In addition, orthovanadate was determined to increase intracellular Ca activity by mobilizing intracellular calcium stores, as determined with the fluorescent intracellular calcium probe fura-2. TPA pretreatment blocks orthovanadate stimulated mobilization of intracellular Ca stores. It appears clear that in HSWP cells pretreatment of cells with phorbol ester is capable of artificially desensitizing the early cellular responses to mitogenic stimuli (growth factors, orthovanadate) by blocking the signal transduction mechanism involved at a point prior to the release of inositol phosphates. We hypothesize that in HSWP cells the normal desensitization of both inositol phosphate release and Na/H exchange is mediated via activation of protein kinase C subsequent to the stimulus-mediated activation of phospholipase C and release of protein kinase C activator diacylglycerol. However it is interesting to note that TPA-mediated inhibition of these early responses in HSWP cells does not inhibit their ability to be stimulated to incorporate [3H]-thymidine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Acute hydrolysis of phosphoinositides has been demonstrated in bovine aortic endothelial cells (BAEC) treated with bradykinin (BK) (10(-7)M). The first phosphoinositide to decrease was phosphatidylinositol-4,5-bisphosphate (PIP2) indicating this to be the initial substrate of phospholipase action. Other lipid changes associated with the stimulation of BAEC were an increase in diacylglycerol (DAG) and arachidonic acid (AA) with a sustained production of phosphatidic acid (PA). The changes in cell phospholipids were accompanied by the release of inositol phosphates. Inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) was produced within 10 s of stimulation with BK. There was no evidence for the production of inositol-1,3,4-trisphosphate. The release of ionic calcium (Ca2+) intracellularly was demonstrated. The timecourse of the rise in intracellular Ca2+ was consistent with the timecourse of production of IP3. Intracellular Ca2+ rose from 127 +/- 21 nM to 462 +/- 27 nM. The Ca2+ peak was at 7.0 +/- 0.4 s and took 3 min to reach a steady state which remained above the basal level. When extracellular Ca2+ was depleted in the extracellular medium a spike of intracellular Ca2+ release was measured with an immediate return to basal. Entry of extracellular Ca2+ into the cell after ionophore A23187 treatment does not induce inositol phosphate release, indicating that phosphoinositide hydrolysis is likely to be the cause rather than consequence of the elevation in cytosolic Ca2+. These data indicate action of phospholipase C (PLC) on PIP2 after BK stimulation of BAEC with the subsequent production of InsP3 causing the resulting intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Activation of Ca2+-mobilizing receptors rapidly increases the cytoplasmic Ca2+ concentration both by releasing Ca2+ stored in endoplasmic reticulum and by stimulating Ca2+ entry into the cells. The mechanism by which Ca2+ release occurs has recently been elucidated. Receptor activation of phospholipase C results in the hydrolysis of the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), to yield two intracellular messengers, diacylglycerol (DAG) and (1,4,5)inositol trisphosphate [(1,4,5)IP3]. DAG remains in the plasma membrane where it stimulates protein phosphorylation via the phospholipid-dependent protein kinase C. (1,4,5)IP3 diffuses to and interacts with specific sites on the endoplasmic reticulum to release stored Ca2+. Receptor stimulation of phospholipase C appears to be mediated by one or more guanine nucleotide-dependent regulatory proteins by a mechanism analogous to hormonal activation of adenylyl cyclase. The actions of (1,4,5)IP3 on Ca2+ mobilization are terminated by two metabolic pathways, sequential dephosphorylation to inositol bisphosphate (IP2), inositol monophosphate (IP) and inositol or by phosphorylation to inositol tetrakisphosphate (IP4) and sequential dephosphorylation to different inositol phosphates. A sustained cellular response also requires Ca2+ entry into the cell from the extracellular space. The mechanism by which hormones increase Ca2+ entry is not known; a recent proposal involving movement of Ca2+ through the endoplasmic reticulum, possibly regulated by IP4, will be considered here.  相似文献   

17.
Human chorionic gonadotropin, hCG, a hormone which increases intracellular cAMP, provoked rapid (30 s) and sustained (up to 30 min) increases in the levels of inositol mono-, bis- and trisphosphates (IP, IP2 and IP3, respectively) in bovine luteal cells. LiCl (10 mM) enhanced inositol phosphate accumulation in response to hCG. Concentration-dependent increases in inositol phosphates, cAMP and progesterone accumulation were observed in hCG-treated luteal cells. hCG also induced rapid and concentration-dependent increases in cytosolic free Ca2+ as measured by quin 2 fluorescence. These findings demonstrate that hCG stimulates the phospholipase C-IP3 and diacylglycerol 'second messenger' system in the bovine corpus luteum.  相似文献   

18.
The addition of bradykinin to NG115-401L cells grown on coverslips results in the generation of rapid transient increases in intracellular [Ca2+] and inositol phosphates. Changes in intracellular Ca2+, measured using the fluorescent indicator dye Fura-2, show two components; an initial rapid peak in [Ca2+]i which is essentially independent of extracellular Ca2+, and a sustained plateau dependent on the presence of extracellular Ca2+. Analysis of bradykinin stimulated production of [3H]inositol phosphates, by h.p.l.c., shows a rapid biphasic production of inositol 1,4,5-trisphosphate, inositol tetrakisphosphate and inositol bisphosphates, followed by a sustained rise in inositol 1,3,4-trisphosphate production. Quantitative measurements have indicated the presence of other, more polar, [3H]inositol-labelled metabolites which do not show major changes on bradykinin stimulation. The initial phase of inositol phosphate production parallels the rapid transient increase in intracellular [Ca2+], however, the second phase of inositol phosphate production occurs when intracellular [Ca2+] is declining and implies a complex series of regulatory events following receptor stimulation. Similar time courses of inositol 1,4,5-trisphosphate and Ca2+ signals provides supporting evidence that inositol 1,4,5-trisphosphate is the second messenger coupling bradykinin receptor stimulation to release of Ca2+ from intracellular stores.  相似文献   

19.
Vasopressin-induced phosphatidylinositol turnover and mobilization of intracellular Ca2+ was studied using an established smooth muscle cell line (A-10). The cells were subcloned to ensure a monoclonal cell population. The accumulation of inositol mono-, di-, and tris-phosphates (IP1, IP2, and IP3, respectively), and the mobilization of intracellular Ca2+ were dependent on the time of incubation and the concentration of arginine vasopressin (AVP). IP1, IP2, and IP3 were significantly elevated after 15 sec and remained elevated for up to 2 hr. The concentrations of AVP required for half-maximal stimulation of IP1, IP2, and IP3 formation were 2, 12, and 4 nM, respectively. LiCl was required to observe the accumulation of inositol phosphates in response to AVP. Significant 45Ca2+ efflux was observed within 15 sec after exposure to AVP. By employing the vasopressin receptor subtype selective antagonists [d(CH2)5Tyr(Me)AVP, V1; d(CH2)5D-Tyr(Et)VAVP,V1/V2; d(CH2) 5D-IleVAVP,V2] and agonists [AVP, V1/V2; dDAVP, V2; dVDAVP, V2], we found that the vasopressin-induced stimulation of phosphatidylinositol turnover and 45Ca2+ efflux were mediated by receptors of the vascular V1 subtype. Pertussis toxin pretreatment partially inhibited vasopressin-induced phosphatidylinositol turnover. These data demonstrate that activation of V1 receptors of vascular smooth muscle cells resulted in enhanced phosphatidylinositol turnover and mobilization of intracellular Ca2+.  相似文献   

20.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号