首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-sensitive potassium (K(ATP)) channels are expressed in many excitable, as well as epithelial, cells and couple metabolic changes to modulation of cell activity. ATP regulation of K(ATP) channel activity may involve direct binding of this nucleotide to the pore-forming inward rectifier (Kir) subunit despite the lack of known nucleotide-binding motifs. To examine this possibility, we assessed the binding of the fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)adenosine 5'-triphosphate (TNP-ATP) to maltose-binding fusion proteins of the NH(2)- and COOH-terminal cytosolic regions of the three known K(ATP) channels (Kir1.1, Kir6.1, and Kir6.2) as well as to the COOH-terminal region of an ATP-insensitive inward rectifier K(+) channel (Kir2.1). We show direct binding of TNP-ATP to the COOH termini of all three known K(ATP) channels but not to the COOH terminus of the ATP-insensitive channel, Kir2.1. TNP-ATP binding was specific for the COOH termini of K(ATP) channels because this nucleotide did not bind to the NH(2) termini of Kir1.1 or Kir6.1. The affinities for TNP-ATP binding to K(ATP) COOH termini of Kir1.1, Kir6.1, and Kir6.2 were similar. Binding was abolished by denaturing with 4 m urea or SDS and enhanced by reduction in pH. TNP-ATP to protein stoichiometries were similar for all K(ATP) COOH-terminal proteins with 1 mol of TNP-ATP binding/mole of protein. Competition of TNP-ATP binding to the Kir1.1 COOH terminus by MgATP was complex with both Mg(2+) and MgATP effects. Glutaraldehyde cross-linking demonstrated the multimerization potential of these COOH termini, suggesting that these cytosolic segments may directly interact in intact tetrameric channels. Thus, the COOH termini of K(ATP) tetrameric channels contain the nucleotide-binding pockets of these metabolically regulated channels with four potential nucleotide-binding sites/channel tetramer.  相似文献   

2.
The coupling of cell metabolism to membrane electrical activity is a vital process that regulates insulin secretion, cardiac and neuronal excitability and the responses of cells to ischemia. ATP-sensitive potassium channels (K(ATP); Kir6.x) are a major part of this metabolic-electrical coupling system and translate metabolic signals such as the ATP:ADP ratio to changes in the open or closed state (gate) of the channel. The localization of the nucleotide-binding site (NBS) on Kir6.x channels and how nucleotide binding gates these K(ATP) channels remain unclear. Here, we use fluorescent nucleotide binding to purified Kir6.x proteins to define the peptide segments forming the NBS on Kir6.x channels and show that unique N- and C-terminal interactions from adjacent subunits are required for high-affinity nucleotide binding. The short N- and C-terminal segments comprising the novel intermolecular NBS are next to helices that likely move with channel opening/closing, suggesting a lock-and-key model for ligand gating.  相似文献   

3.
The ATP-sensitive K+ channel of RINm5F insulinoma cells is activated after an intracellular ATP depletion. This activation can be followed by 86Rb+ efflux. Once activated by ATP depletion, the K+ channel can be blocked by the hypoglycemic drug, glibenclamide. The blockade is of a high-affinity type (K0.5 = 0.06 nM). Recording of the activity of ATP-sensitive K+ channels with the patch-clamp technique confirmed that they could be completely blocked with 20 nM glibenclamide.  相似文献   

4.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.  相似文献   

5.
The ability of glycolysis, oxidative phosphorylation, the creatine kinase system, and exogenous ATP to suppress ATP-sensitive K+ channels and prevent cell shortening were compared in patch-clamped single guinea pig ventricular myocytes. In cell-attached patches on myocytes permeabilized at one end with saponin, ATP-sensitive K+ channels were activated by removing ATP from the bath, and could be closed equally well by exogenous ATP or substrates for endogenous ATP production by glycolysis (with the mitochondrial inhibitor FCCP present), mitochondrial oxidative phosphorylation, or the creatine kinase system. In the presence of an exogenous ATP-consuming system, however, glycolytic substrates (with FCCP present) were superior to substrates for either oxidative phosphorylation or the creatine kinase system at suppressing ATP-sensitive K+ channels. All three groups of substrates were equally effective at preventing cell shortening. In 6 of 38 excised inside-out membrane patches, ATP-sensitive K+ channels activated by removing ATP from the bath were suppressed by a complete set of substrates for the ATP-producing steps of glycolysis but not by individual glycolytic substrates, which is consistent with the presence of key glycolytic enzymes located near the channels in these patches. Under whole-cell voltage-clamp conditions, inclusion of 15 mM ATP in the patch electrode solution dialyzing the interior of the cell did not prevent activation of the ATP-sensitive K+ current under control conditions or during exposure to complete metabolic inhibition. In isolated arterially perfused rabbit interventricular septa, selective inhibition of glycolysis caused an immediate increase in 42K+ efflux rate, which was prevented by 100 microM glyburide, a known blocker of ATP-sensitive K+ channels. These observations suggest that key glycolytic enzymes are associated with cardiac. ATP-sensitive K+ channels and under conditions in which intracellular competition for ATP is high (e.g., in beating heart) that act as a preferential source of ATP for these channels.  相似文献   

6.
This investigation used a patch clamp technique to test the hypothesis that protein kinase G (PKG) contributes to the phosphorylation and activation of ATP-sensitive K(+) (K(ATP)) channels in rabbit ventricular myocytes. Nitric oxide donors and PKG activators facilitated pinacidil-induced K(ATP) channel activities in a concentration-dependent manner, and a selective PKG inhibitor abrogated these effects. In contrast, neither a selective protein kinase A (PKA) activator nor inhibitor had any effect on K(ATP) channels at concentrations up to 100 and 10 microm, respectively. Exogenous PKG, in the presence of both cGMP and ATP, increased channel activity, while the catalytic subunit of PKA had no effect. PKG activity was prevented by heat inactivation, replacing ATP with adenosine 5'-O-(thiotriphosphate) (a nonhydrolyzable analog of ATP), removing Mg(2+) from the internal solution, applying a PKG inhibitor, or by adding exogenous protein phosphatase 2A. The effects of cGMP analogs and PKG were observed under conditions in which PKA was repressed by a selective PKA inhibitor. The results suggest that K(ATP) channels are regulated by a PKG-signaling pathway that acts via PKG-dependent phosphorylation. This mechanism may, at least in part, contribute to a signaling pathway that induces ischemic preconditioning in rabbit ventricular myocytes.  相似文献   

7.
ATP-sensitive potassium (K(ATP)) channels are regulated by a variety of cytosolic factors (adenine nucleotides, Mg(2+), phospholipids, and pH). We previously reported that K(ATP) channels are also regulated by endogenous membrane-bound SNARE protein syntaxin-1A (Syn-1A), which binds both nucleotide-binding folds of sulfonylurea receptor (SUR)1 and 2A, causing inhibition of K(ATP) channel activity in pancreatic islet β-cells and cardiac myocytes, respectively. In this study, we show that ATP dose-dependently inhibits Syn-1A binding to SUR1 at physiological concentrations, with the addition of Mg(2+) causing a decrease in the ATP-induced inhibitory effect. This ATP disruption of Syn-1A binding to SUR1 was confirmed by FRET analysis in living HEK293 cells. Electrophysiological studies in pancreatic β-cells demonstrated that reduced ATP concentrations increased K(ATP) channel sensitivity to Syn-1A inhibition. Depletion of endogenous Syn-1A in insulinoma cells by botulinum neurotoxin C1 proteolysis followed by rescue with exogenous Syn-1A showed that Syn-1A modulates K(ATP) channel sensitivity to ATP. Thus, our data indicate that although both ATP and Syn-1A independently inhibit β-cell K(ATP) channel gating, they could also influence the sensitivity of K(ATP) channels to each other. These findings provide new insight into an alternate mechanism by which ATP regulates pancreatic β-cell K(ATP) channel activity, not only by its direct actions on Kir6.2 pore subunit, but also via ATP modulation of Syn-1A binding to SUR1.  相似文献   

8.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

9.
Potassium channels inhibited by adenosine-5'-trisphosphate, K(ATP), found in the transverse tubular membrane of rabbit skeletal muscle were studied using the planar bilayer recording technique. In addition to the single-channel properties of K(ATP) we report its regulation of Mg2+ and by the guanosine-5'-trisphosphate analogue, GTP-y(gamma)-S. The K(ATP) channel (a) has a conductance of 67 pS in 250 mM internal, 50 mM external KCl, and rectifies weakly at holding potentials more positive than 50 mV, (b) is not activated by internal Ca2+ or membrane depolarization, (c) has a permeability ratio PK/PNa greater than 50, and (d) is inhibited by millimolar internal ATP. Activity of K(ATP), measured as open channel probability as a function of time, was unstable at all holding potentials and decreases continuously within a few minutes after a recording is initiated. After a decrease in activity, GTP-y-S (100 microM) added to the internal side reactivated K(ATP) channels but only transiently. In the presence of internal 1 mM Mg2+, GTP-y-S produced a sustained reactivation lasting 20-45 min. Incubation of purified t-tubule vesicles with AlF4 increased the activity of K(ATP) channels, mimicking the effect of GTP-y-S. The effect of AlF4 and the requirement of GTP-y-S plus Mg2+ for sustained channel activation suggests that a nucleotide-binding G protein regulates ATP-sensitive K channels in the t-tuble membrane of rabbit skeletal muscle.  相似文献   

10.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

11.
The fluorescein derivative phloxine B is a potent modulator of the cystic fibrosis transmembrane conductance regulator (CFTR). Low micromolar concentrations of phloxine B stimulate CFTR Cl(-) currents, whereas higher concentrations of the drug inhibit CFTR. In this study, we investigated the mechanism of action of phloxine B. Phloxine B (1 microm) stimulated wild-type CFTR and the most common cystic fibrosis mutation, DeltaF508, by increasing the open probability of phosphorylated CFTR Cl(-) channels. At each concentration of ATP tested, the drug slowed the rate of channel closure without altering the opening rate. Based on the effects of fluorescein derivatives on transport ATPases, these data suggest that phloxine B might stimulate CFTR by binding to the ATP-binding site of the second nucleotide-binding domain (NBD2) to slow the dissociation of ATP from NBD1. Channel block by phloxine B (40 microm) was voltage-dependent, enhanced when external Cl(-) concentration was reduced and unaffected by ATP (5 mm), suggesting that phloxine B inhibits CFTR by occluding the pore. We conclude that phloxine B interacts directly with CFTR at multiple sites to modulate channel activity. It or related agents might be of value in the development of new treatments for diseases caused by the malfunction of CFTR.  相似文献   

12.
Single-channel currents were recorded from ATP-sensitive K+ channels in inside-out membrane patches excised from isolated rat ventricular myocytes. Perfusion of the internal surface of excised membrane patches with solutions which contained between 5 and 100 microM free calcium caused the loss of K+ATP channel activity which was not reversed when the membranes were washed with Ca-free solution. K+ATP channel activity could be recovered by bathing the patches in Mg.ATP. The loss of K+ATP channel activity provoked by internal calcium was a process which occurred over a time scale of seconds. Channel closure evoked by internal ATP was essentially instantaneous. The speed of K+ATP channel inactivation increased with the concentration of calcium. Neither a phosphatase inhibitor (fluoride ions) nor a proteinase inhibitor (leupeptin) had any effect upon the loss of K+ channel activity stimulated by internal calcium.  相似文献   

13.
To determine the interaction site(s) of ATP-sensitive K(+) (K(ATP)) channels for G-proteins, sulfonylurea receptor (SUR2A or SUR1) and pore-forming (Kir6.2) subunits were reconstituted in the mammalian cell line, COS-7. Intracellular application of the G-protein betagamma2-subunits (G(betagamma)(2)) caused a reduction of ATP-induced inhibition of Kir6.2/SUR channel activities by lessening the ATP sensitivity of the channels. G(betagamma)(2) bound in vitro to both intracellular (loop-NBD) and C-terminal segments of SUR2A, each containing a nucleotide-binding domain (NBD). Furthermore, a single amino acid substitution in the loop-NBD of SUR (Arg656Ala in SUR2A or Arg665Ala in SUR1) abolished the G(betagamma)(2)-dependent alteration of the channel activities. These findings provide evidence that G(betagamma) modulates K(ATP) channels through a direct interaction with the loop-NBD of SUR.  相似文献   

14.
Both 86Rb+ efflux experiments and electrophysiological studies have shown that arachidonic acid and other nonesterified fatty acids activate ATP-sensitive K+ channels in insulinoma cells (HIT-T15). Activation was observed with arachidonic, oleic, linoleic, and docosahexaenoic acid but not with myristic, stearic, and elaidic acids. Fatty acid activation of ATP-sensitive K+ channels was blocked by antidiabetic sulfonylureas such as glibenclamide. The activating effect of arachidonic acid was unaltered by indomethacin and by nordihydroguaiaretic acid, indicating that it is not due to metabolites of arachidonic acid via cyclooxygenase or lipoxygenase pathways. Moreover, the nonmetabolizable analogue of arachidonic acid, eicosatetraynoic acid, was an equally potent activator. Activation of ATP-sensitive K+ channels by fatty acids was potentiated by diacylglycerol and was inhibited by calphostin C, an inhibitor of protein kinase C. These findings indicate that fatty acid activation of ATP-sensitive K+ channels is most likely due to the participation of arachidonic acid (and other fatty acid)-activated protein kinase C isoenzymes. Activation of ATP-sensitive K+ channels by nonesterified fatty acids is not involved in the control of insulin secretion since arachidonic acid stimulates insulin secretion from insulinoma cells instead of inhibiting it.  相似文献   

15.
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.  相似文献   

16.
ATP-sensitive potassium (K(ATP)) channels play important roles in many cellular functions such as hormone secretion and excitability of muscles and neurons. Classical ATP-sensitive potassium (K(ATP)) channels are heteromultimeric membrane proteins comprising the pore-forming Kir6.2 subunits and the sulfonylurea receptor subunits (SUR1 or SUR2). The molecular mechanism by which hormones and neurotransmitters modulate K(ATP) channels via protein kinase A (PKA) is poorly understood. We mutated the PKA consensus sequences of the human SUR1 and Kir6.2 subunits and tested their phosphorylation capacities in Xenopus oocyte homogenates and in intact cells. We identified the sites responsible for PKA phosphorylation in the C-terminus of Kir6.2 (S372) and SUR1 (S1571). Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation. While the phosphorylation of Kir6.2 increases channel activity, the phosphorylation of SUR1 contributes to the basal channel properties by decreasing burst duration, interburst interval and open probability, and also increasing the number of functional channels at the cell surface. Moreover, the effect of PKA could be mimicked by introducing negative charges in the PKA phosphorylation sites. These data demonstrate direct phosphorylation by PKA of the K(ATP) channel, and may explain the mechanism by which Gs-coupled receptors stimulate channel activity. Importantly, they also describe a model of heteromultimeric ion channels in which there are functionally distinct roles of the phosphorylation of the different subunits.  相似文献   

17.
We studied the blocking mechanism of 5-hydroxydecanoate, a novel antiarrhythmic agent, on the ATP-sensitive K+ channel in the single ventricular myocytes using the inside-out patch clamp technique. The channel activity in response to 5-hydroxydecanoate varied with each membrane patch corresponding to the sensitivity to ATP. In this condition the exogenous application of cAMP or cAMP-dependent protein kinase (PKA) obviously recovered the ATP-sensitive K+ channel activity after channel deactivation. By contrast, in membrane patches exhibited low sensitivity to ATP, endogenous cAMP-dependent protein kinase inhibitor (PKI) depressed the channel activity and restored the inhibitory action of 5-hydroxydecanoate and ATP on the channel. These results suggest that PKA-PKI system is involved in the regulatory mechanism of gating activity of the ATP-sensitive K+ channel and the blocking action of 5-hydroxydecanoate and ATP appears to be exerted by potentiating the inhibitory action of PKI on the channel.  相似文献   

18.
After 3-7 days in culture, chicken myotubes possess five types of K+ channel: two high-conductance channels of 195 and 105 pS which are sensitive to tetraethylammonium (TEA), an ATP-sensitive channel of 64 pS and two low-conductance channels of 40 and 15 pS which are insensitive to TEA and ATP. The same population of channels is to be found in EGTA-treated muscle cells with blocked fusion and, with the exception of the ATP-sensitive channel, also in 1-day-old myoblasts. There are differences between myoblasts and myotubes in the percentage of incidence of individual channel types. High-conductance K+ channels are most frequently to be observed in myotubes, but they are rare in myoblasts and EGTA-treated cells where low-conductance K+ channels predominate.  相似文献   

19.
mitoKATP通道参与心肌缺血预处理保护作用的机制   总被引:1,自引:0,他引:1  
目的:探讨血管紧张素转换酶抑制剂(ACEI)和阈下缺血预处理联合预处理诱导的心肌保护作用中mi-toKatp通道激动后的作用机制:方法:采用离体大鼠心脏Langendorff灌流模型,观察心脏电脱耦联发生时间、细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性的改变:结果:单独使用卡托普利、或给予大鼠心脏2min缺血/10min复灌作为阈下缺血预处理,均不能改善长时间缺血/复灌引起的心脏收缩功能下降?而卡托普利和阂下缺血预处理联合使用可增高心脏收缩功能。mitoKatp通道特异性阻断剂5-HD可取消这一联合预处理的作用一联合预处理可引起缺血后电脱耦联发生时间延长,缺血心肌细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性增高;5-HD可取消此作用结论:mitoKatp通道参与了联合预处理延迟缺血引起的细胞间脱耦联和促进细胞膜离子通道稳定性维持的作用。  相似文献   

20.
Membrane potentials and synaptic potentials were recorded using the patch clamp technique from neurons isolated from the substantia nigra. Intracellular perfusion of dopaminergic neurons with an ATP-free solution caused hyperpolarization and inhibition of firing. Intracellular perfusion with a solution containing 2 mM ATP prevented this hyperpolarization, but application of the K+ channel openers cromakalim and pinacidil caused a similar hyperpolarization as well as the disappearance of bicuculline-sensitive synaptic potentials. All these effects were reversed by sulfonylureas, indicating that they are mediated by ATP-sensitive K+ channels. It is concluded that K+ channel openers activate ATP-sensitive K+ channels both presynaptically on GABAergic terminals and postsynaptically on substantia nigra dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号