首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.  相似文献   

3.
Colon carcinomas appear to arise from the cumulative effect of mutations to several genes (APC, DCC, p53, ras, hMLH1, and hMSH2). By using novel colonic epithelial cell lines derived from the Immorto mouse, named the YAMC (young adult mouse colon) cell line, and an Immorto-Min mouse hybrid, named the IMCE (Immorto-Min colonic epithelial) cell line, carrying the Apc min mutation, we investigated the effect of an activated v-Ha-ras gene on tumor progression. The YAMC and IMCE cell lines are normal colonic epithelial cell lines which are conditionally immortalized by virtue of expression of a temperature-sensitive simian virus 40 (SV40) large T antigen. Under conditions which permit expression of a functional SV40 large T antigen (33 degrees C plus gamma interferon), neither the YAMC nor the IMCE cell line grows in soft agar or is tumorigenic in nude mice. In vitro, when the SV40 large T antigen is inactivated (39 degrees C without gamma interferon), the cells stop proliferating and die. By infecting the YAMC and IMCE cell lines with a replication-defective psi2-v-Ha-ras virus, we derived cell lines which overexpress the v-Ha-ras gene (YAMC-Ras and IMCE-Ras). In contrast to the parental cell lines, under conditions in which the SV40 large T antigen is inactive, both the YAMC-Ras and IMCE-Ras cell lines continue to proliferate. Initally YAMC-Ras cells do not form tumors; however, tumors are visible after 90 days of incubation. IMCE-Ras cells form colonies in soft agar under both permissive and nonpermissive culture conditions. Furthermore, IMCE-Ras cells form tumors in nude mice within 3 weeks. The phenotype of the IMCE-Ras cell line thus clearly demonstrates that a defective Apc allele and an activated ras gene are sufficient to transform normal colonic epithelial cells and render them tumorigenic.  相似文献   

4.
Activated ras genes transform REF52 cells only at low frequencies and adenovirus early region 1A collaborates with ras oncogenes to convert REF52 cells to a tumorigenic phenotype. While failure to transform did not result from an absence of ras gene expression, E1A appeared to enhance expression of transfected ras genes by approximately tenfold. However, enhanced ras expression alone does not account for collaboration by E1A since overexpression of T24 Ha-ras p21 induced morphological crisis and cell growth arrest rather than stable transformation. These results indicate that E1A contributes complementing biochemical activities that enable ras genes to transform REF52 and suggest that the role of E1A in primary cell transformation may extend beyond facilitating in vitro establishment.  相似文献   

5.
Activated v-myc (pSV v-myc) and v-Ha-ras (GT10) oncogenes were introduced into normal human lymphocytes, NIH 3T3 fibroblasts, B-lymphoblastoid cells, and human epithelial cells, using a reconstituted Sendai virus envelope-mediated gene transfer technique. Efficient transfer of the plasmid in each cell type was demonstrable within 1.5 h of transfection by Southern blotting of extrachromosomal DNA extracts, which unexpectedly revealed that v-myc plasmid DNA was unstable in normal lymphocytes but not in the other cell types. The v-myc plasmid was stabilized when cotransfected into lymphocytes together with v-Ha-ras. The transfected v-Ha-ras plasmid was stable in all the cell types tested. v-myc plasmid expression was clearly detectable by 5 h in all cell types except human lymphocytes. Lymphocytes expressed v-myc when transfected together with v-Ha-ras. Transfected ras oncogene was efficiently expressed in all the cell types tested. Expression of the transfected genes increased at 24 and 48 h after transfection. Even though plasmid stability and expression were achieved in myc-ras-cotransfected lymphocytes, no effects on cellular DNA synthesis or immortalization were observed, in contrast to efficient transformation of NIH 3T3 fibroblasts by the same procedure. Our data suggest that efficient expression of transfected myc and ras oncogenes in normal quiescent human lymphocytes is not sufficient for the induction of cell growth and immortalization.  相似文献   

6.
The retinoblastoma susceptibility gene product, Rb, is suspected to suppress cell growth. Rb is a 110-114 kd nuclear phosphoprotein. We have previously demonstrated that SV40 T antigen binds only to unphosphorylated Rb, and not pp112-114Rb, the family of phosphorylated Rb. Here we demonstrate the cell cycle-dependent phosphorylation of Rb. In G0/G1 cells, virtually all the Rb is unphosphorylated. In contrast, during S and G2, it is largely, if not exclusively, phosphorylated. Rb phosphorylation occurs at the G1/S boundary in several cell types tested. A 14 residue peptide, corresponding to the SV40 T domain required for transformation, is able to compete effectively with SV40 T for binding to p110Rb. We propose a model to explain how Rb may suppress cell growth by acting as a cell cycle regulatory element.  相似文献   

7.
In simian virus 40 (SV40)-transformed cells, a tight complex is formed between the viral large T antigen (large T) and p53. It has been proposed that this complex interferes with the antiproliferative activity of p53. This notion was tested in primary rat fibroblasts by assessing the ability of SV40-mediated transformation to be spared from the inhibitory effect of wild-type (wt) p53. The data indicate that relative to transformation induced by myc plus ras, SV40-plus-ras-mediated focus formation was indeed much less suppressed by p53 plasmids. A majority of the resultant cell lines made a p53 protein with properties characteristic of a wt conformation. Furthermore, cell lines expressing stably both SV40 large T and a temperature-sensitive p53 mutant continued to proliferate at a temperature at which this p53 assumes wt-like properties and normally causes a growth arrest. Surprisingly, at least partial resistance to the growth-inhibitory effect of wt p53 was also evident when transformation was mediated by an SV40 deletion mutant, encoding a large T which does not bind p53 detectably. In addition to supporting the idea that SV40 can overcome the growth-restrictive activity of wt p53, these findings strongly suggest that at least part of this effect does not require a stable association between p53 and large T.  相似文献   

8.
To overcome the difficulty of assessing oncogene action in human epithelial cell types, such as thyroid, which have limited proliferative potential in culture, we have explored the use of temperature-sensitive (ts) mutants of simian virus 40 (SV40) early region to create conditionally immortalized epithelial cell lines. Normal primary cultures of human thyroid follicular cells were transfected with a plasmid containing the SV40 early region from mutant tsA58. Expanding epithelial colonies were observed after 2 to 3 months, all of which grew to greater than 200 population doublings without crisis. All showed tight temperature dependence for growth. After switch-up to the restrictive temperature (40.5 degrees C), no further increase in cell number was seen after 1 to 2 days. However, DNA synthesis declined much more slowly; the dissociation from cell division led to marked polyploidy. Viability was maintained for up to 2 weeks. Introduction of an inducible mutant ras gene into ts thyroid cells led, as expected, to morphological transformation at the permissive temperature when ras was induced. Interestingly, this was associated with a marked reduction in net growth rate. At the restrictive temperature, induction of mutant ras caused rapid cell death. These results demonstrate the utility of a ts SV40 mutant to permit the study of oncogene action in an otherwise nonproliferative target cell and reveal important differences in the interaction between ras and SV40 T in these epithelial cells compared with previously studied cell types.  相似文献   

9.
Cell growth control appears to be drastically altered as a consequence of transformation. Because the cell surface appears to have a role in modulating cell growth and simian virus 40 (SV40)-transformed cells express large T antigen (T-Ag) in the plasma membrane, we investigated whether surface T-Ag expression varies according to cell growth rate. Different growth states were obtained by various combinations of seeding density, serum concentration, and temperature, and cell cycle distributions were determined by flow microcytofluorometry. Actively dividing SV40-transformed mouse cell cultures were consistently found to express higher levels of surface T-Ag and T-Ag/p53 complex than cultures in which cells were mostly resting. In addition, the T-Ag/p53 complex disappeared from the surface of tsA7-transformed cells cultured under restrictive conditions known to induce complete growth arrest (39.5 degrees C), although the surface complex did not disappear from other tsA transformants able to keep cycling at 39.5 degrees C. These results suggest that surface SV40 T-Ag or surface T-Ag/p53 complex, or both, are involved in determining the growth characteristics of SV40-transformed cells.  相似文献   

10.
We examined the effects of large T antigen of simian virus 40 (SV40) on the proliferation phenotypes of temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, which cease proliferating in the G1 phase of the cell cycle at a restrictive temperature (39.8 degrees C). Four ts mutants, each representing independent complementation groups, were transformed with the dl-884 mutant of SV40 which lacks the unique coding region for small t antigen. In the case of two ts mutants, their transformed derivatives did not cease proliferation at 39.8 degrees C. In the other two mutants, the transformed cells continued to enter the S phase but the cells became detached from the dishes thereafter, at 39.8 degrees C. The proliferation phenotypes of the dl-884-transformed cells at 39.8 degrees C were quite similar with those of the same mutants transformed with the wild-type SV40. These results indicate that large T antigen alone is sufficient to overcome the inhibition of cellular entry into S phase caused by four different ts defects and determines the proliferation phenotypes of the cells after entering the S phase at a restrictive temperature, and that small t antigen does not alter the cellular phenotypes determined by large T antigen.  相似文献   

11.
The DNA tumor virus oncogenes (adenovirus E1A, simian virus 40 (SV40) large T antigen, and papillomavirus E7) have been instrumental in illuminating the molecules and mechanisms of cell cycle progression and carcinogenesis. However, since these multifunctional proteins target so many important cellular regulators, it is sometimes difficult to establish the functional importance of any individual interaction. Perhaps a herpesvirus protein, newly defined as a cell cycle regulator, can help address these issues. Like the DNA tumor virus proteins, the human cytomegalovirus (HCMV) pp71 protein contains a retinoblastoma protein (Rb) binding motif (LxCxD), and stimulates DNA synthesis in quiescent cells. Unlike E1A, T antigen, and E7, pp71 expression does not induce apoptosis, nor does it cooperate to transform primary cells. Determining how pp71 induces cell cycle progression without invoking apoptosis or leading to cellular transformation may help in defining the signals that ultimately lead to these processes.  相似文献   

12.
The thermolabile large T antigen, encoded by the simian virus 40 early-region mutant tsA58, was used to establish clonal cell lines derived from rat embryo fibroblasts. These cell lines grew continuously at the permissive temperature but upon shift-up to the nonpermissive temperature showed rapidly arrested growth. The growth arrest occurred in either the G1 or G2 phase of the cell cycle. After growth arrest, the cells remained metabolically active as assayed by general protein synthesis and the ability to exclude trypan blue. The inability of these cell lines to divide at the nonpermissive temperature was not readily complemented by the exogenous introduction of other nuclear oncogenes. This finding suggests that either these genes establish cells via different pathways or that immortalization by one oncogene results in a finely balanced cellular state which cannot be adequately complemented by another establishment gene.  相似文献   

13.
Neighbour suppression of growth of tumour cells by stationary normal cells might be important in early stages of cancer. We have studied this using suppressor and non-suppressor lines of 3T3 fibroblasts and SV40 transformed derivatives. Growth suppression of transformed cells depended on direct contact with stationary confluent cultures of 3T3 cells but not on gap junction communication. It was not caused by apoptosis nor through the normal G0/G1 block present in the confluent normal cells. Instead, there was a progressive elongation of the cell cycle leading to arrest in G2/M in the transformed cells. This indicates an unusual type of growth arrest not previously involved in social control of cell growth.  相似文献   

14.
Cellular and viral oncogenes have been linked to the transformation of established cell lines in vitro, to the induction of tumors in vivo, and to the partial transformation or immortalization of primary cells. Based on the ability to cooperate with mutated ras oncogenes in the transformation of primary cells, the adenovirus E1a and cellular p53 genes have been assigned an immortalizing activity. It is demonstrated in this paper that the adenovirus type 5 E1a gene and simian virus 40 promoter-linked p53 cDNA are able to transform previously immortalized cells to a tumorigenic phenotype without a significant change in cell morphology. It is also shown that, when linked to a constitutive promoter, the normal mouse and human c-myc genes have the same transforming activity. Cells transformed by each of these oncogenes have an increased capacity to grow in the absence of growth factors and a limited anchorage-independent growth capability.  相似文献   

15.
Expression of simian virus 40 (SV40) large T antigen efficiently immortalizes and transforms primary cells. We previously reported that a hybrid polyomavirus-SV40 large T antigen, PyT1-521-SVT336-708, binds to both p53 and pRb but does not transform an established rat cell line (J. J. Manfredi and C. Prives, J. Virol. 64:5250-5259, 1990). Here we show that this hybrid large T antigen is capable of immortalizing primary rat cells. Plasmids that express resistance to G418 sulfate and either SV40 large T antigen or PyT1-521-SVT336-708 were transfected into primary rat embryo fibroblasts, and cell lines were established. The cell lines that expressed PyT1-521-SVT336-708 were not fully transformed but did exhibit altered growth properties. Although these PyT1-521-SVT336-708-expressing lines did not form foci, they did grow in low serum and grew to a high saturation density; these cell lines also formed colonies in soft agar, but their colonies were much smaller than those seen with an SV40 large-T-antigen-expressing line. PyT1-521-SVT336-708 also demonstrated the ability to cooperate with activated Ha-ras to form foci on primary rat embryo fibroblasts. Surprisingly, two types of morphologies in such lines were observed: refractile and spindle shaped. Although there was no correlation between T-antigen level and morphology, all lines that displayed refractile morphology expressed high levels of p21ras. Since the p53 binding activity of PyT1-521-SVT336-708 appears to be intact, these results suggest that there are functions residing in the amino end of SV40 large T antigen which are necessary for full transformation that are missing from the amino end of polyomavirus large T antigen. Conversely, conferring the ability to bind to p53 on an amino-terminal fragment of polyomavirus large T antigen, although not enough to allow full transformation function, does increase its oncogenic activity in saturation density and soft agar growth assays.  相似文献   

16.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

17.
By crossing TG.AC v-Ha-ras and K6/ODC transgenic mice, we found previously that an activated ras and follicular ornithine decarboxylase (ODC) overexpression cooperate to generate spontaneous tumors in the skin. Cellular proliferation was dramatically increased in the K6/ODC transgenic skin, as evidenced by elevated proliferating cell nuclear antigen and Ki67 expression compared with nontransgenic littermates. Keratinocytes isolated from transgenic skin also displayed increased clonal growth. Paradoxically, expression of the growth inhibition-associated proteins p53, p21Waf1, p27Klp1, and Bax was increased with ODC overexpression in the skin. ODC overexpression did not affect cyclin D/cyclin-dependent kinase 4 (Cdk4)-dependent phosphorylation of retinoblastoma protein but stimulated cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity, with minimal effect on the levels of these proteins. Thus, ODC/polyamine-induced activation of cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity may cooperate with the ras induction of cyclin D/Cdk4/6-associated retinoblastoma protein phosphorylation to not only stimulate proliferation but ultimately contribute to tumor development.  相似文献   

18.
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.  相似文献   

19.
In this study, we describe the effects of direct activation of PKC by dioctanoylglycerol (DiC8) on cellular morphology and the localization of fibronectin (Fn) in normal, oncogene-transfected, and malignant human endometrial stromal cells. We questioned whether DiC8, an endogenous specific activator of PKC, would function as a second oncogene in partially transformed human endometrial stromal cells (HESC). Cells utilized were (1) normal HESC, (2) HESC transfected with a plasmid containing an origin-defective temperature-sensitive SV40 large T antigen alone or (3) in combination with an EJ ras oncogene, and (4) an endometrial sarcoma cell line (S7). Cell cultures were treated for 1 h with sn-dioctanoylglycerol (DiC8) and stained with a monoclonal fluorescein-labeled anti-Fn antibody. In normal HESC, DiC8 induced cell rounding and caused Fn localization to revert from the perinuclear region to the cell periphery. All experiments in this investigation were performed when cells were maintained at the permissive temperature for SV40 large T antigen function. In HESC expressing the SV40 large T antigen alone, Fn was localized to the perinuclear region and also occurred as parallel strands between cells. When these cells were treated with DiC8, Fn localization changed to intense punctate regions at the cell periphery or to matrix-like patterns between cells. Also, in these cells, DiC8 induced greater detachment of cells from the substrate than from other cells, resulting in an apparent piling up of cells. Control and treated SV40/EJ ras cells and uterine sarcoma cells expressed Fn in a matrix-like pattern between cells. The rounded cellular morphology of treated HESC and treated cells expressing SV40 resembled the morphology of control or treated SV40/EJ ras cells and uterine sarcoma cells. Thus, treated cells expressing the SV40 large T antigen resembled the SV40/EJ ras cells and uterine sarcoma cells with respect to Fn localization and cellular morphology. DiC8 did not appear to further transform HESC expressing SV40 and EJ ras. However, with regard to cell shape and Fn localization, our results suggest that DiC8 may function as a second oncogene in the signal transduction pathway, in cells expressing SV40 alone. It appears that, with regard to Fn localization, DiC8 may alter signal transduction analogously to that caused by the activated Ha-ras oncogene in HESC expressing the SV40 large T antigen.  相似文献   

20.
The ras and myc oncoproteins cooperate to transform the established murine fibroblast cell line C3H10T1/2. To determine the impact of overexpression of the myc oncoprotein on the phenotype of C3H10T1/2 cells, two C3H10T1/2-myc clonal cell lines, SVc-myc 11A and myc neo 13A, were isolated and characterized. Although both C3H10T1/2-myc cell lines are morphologically indistinguishable from wild-type C3H10T1/2 cells and possess growth properties similar to those of C3H10T1/2 cells, each displays a predisposition to transformation following transfection with the activated form of the human H-ras gene. In C3H10T1/2 cells overexpressing the v-myc or H-ras oncogenes, the levels of mRNA encoding max, the recently identified oligomerization partner of myc, remain unchanged, suggesting that the endogenous level of max in C3H10T1/2 cells is sufficient for a high frequency of transformation by ras and myc. Based on these studies, the C3H10T1/2-myc clonal cell lines we describe are suitable model systems for examining the molecular role of the myc protein in transformation and for characterizing additional factors that synergize with myc in multistep transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号