首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila melanogaster embryos we have identified three classes of extrachromosomal circular DNA molecules homologous to the three main families of tandemly repeated genes, 5 S, rDNA and histone. 5 S genes are present in circular multimeric molecules containing up to 16 copies of the 375(±7) base-pair repeated unit. Circular molecules homologous to rDNA are also multimeric molecules, which contain up to ten copies of the 240 base-pair tandemly repeated sequence of the non-transcribed spacer. The two major genomic classes of histone units (4800 and 5000 bases) are found only as monomeric circular molecules.No circular intermediate of the I transposable element was detected in embryos laid by f1 dysgenic females produced by the I-R system of hybrid dysgenesis.As far as we know, it is the first time that genes have been identified among extrachromosomal circular molecules independently of any specific amplification phenomenon.  相似文献   

2.
Segments of African green monkey DNA containing sequences of the highly reiterated cryptic satellite DNA called α-satellite were selected from a library in λ bacteriophage. This λ library was constructed to enrich for monkey segments that contain (1) irregular regions of α-satellite and (2) α-satellite linked to other monkey sequences. At least 11 of 15 cloned monkey segments between 13 × 103 and 16 × 103 base-pairs in length, selected by hybridization to α-satellite, also include other monkey sequences.In general, α-satellite sequences close to the junctions with non-α-satellite DNA contain an abundance of divergent forms compared to the average frequency of such forms within total α-satellite. Many of the cloned segments are missing some of the HinIII sites that occur once in most monomer units of α-satellite, and likewise several of the cloned segments contain restriction sites that rarely occur in α-satellite as a whole. In some segments HinIII sites occur that are spaced at distances other than the basic multiple of 172 base-pairs. At least one of the cloned segments, however, is composed mainly of typical 172 base-pair long α-satellite monomer units.Several of these cloned DNAs have been mapped by restriction endonuclease digestion and Southern blot analysis and the arrangements of α-satellite and non-α-satellite sequences have been determined. In addition to segments that contain a boundary where satellite meets other types of sequence, some contain two such boundaries and thus satellite flanks a non-α-satellite segment. Further, two different types of non-α-satellite sequence appear to be common to more than one phage, perhaps indicating some recurring organization at boundaries.  相似文献   

3.
Restriction site periodicities in highly repetitive DNA of primates.   总被引:2,自引:0,他引:2  
Highly repeated DNA sequences from three Old World primate groups have been compared, using restriction endonucleases. Baboons, macaques and mangabeys share a 3404 base-pair, tandemly repeated DNA that is cut once by EndoR · BamHI. The several species of guenons, including the African green monkey, possess a related 170 base-pair, tandemly organized sequence distinguished by the feature of being cut once by EndoR · HindIII, EndoR · MboII or EndoR · HphI. The tandemly repeated DNA of the colobus monkey is based on a monomer length of 680 base-pairs, being cut once by EndoR · BamI or EndoR · EcoRI. Thus, all three highly repeated DNAs have a monomer length of 170n base-pairs, where n = 1, 2 or 4. The 340 and 680 base-pair repeated DNAs contain an internal 170 base-pair periodicity with respect especially to the EndoR · HindIII cleavage site, but with respect also to several other enzymes that characterize each repeated sequence. The 170 base-pair length is called the fundamental unit.The three repeated DNAs are more conserved in the region around the HindIII site and are more divergent elsewhere in the sequence. All seven 170 base-pair fundamental units were related to one another, judging from the overall similarities of the maps of restriction endonuclease cleavage sites. The highly repeated DNAs from baboons and guenons are related enough to cross-hybridize at relaxed criteria (60 °C in 0.12 m-Na+) but neither hybridizes to repeated colobus DNA under this condition.The results show that highly repeated sequences in primates form a common library descended from a single ancestral sequence, with 170 base-pairs making up the fundamental unit of library members. Occasionally, a member of the library is amplified, creating a newly amplified family. In Old World monkeys the most recent amplification just preceded active speciation.  相似文献   

4.
5.
Restriction fragments of pCS1, a 50.6-kilobase (kb) plasmid present in many strains of Clavibacter michiganense subsp. sepedonicum (“Corynebacterium sepedonicum”), have been cloned in an M13mp11 phage vector. Radiolabeled forms of these cloned fragments have been used as Southern hybridization probes for the presence of plasmid sequences in chromosomal DNA of this organism. These studies have shown that all tested strains lacking the covalently closed circular form of pCS1 contain the plasmid in integrated form. In each case the site of integration exists on a single plasmid restriction fragment with a size of 5.1 kb. Southern hybridizations with these probes have also revealed the existence of a major repeated sequence in C. michiganense subsp. sepedonicum. Hybridizations of chromosomal DNA with deletion subclones of a 2.9-kb plasmid fragment containing the repeated sequence indicate that the size of the repeated sequence is approximately 1.3 kb. One of the copies of the repeated sequence is on the plasmid fragment containing the site of integration.  相似文献   

6.
The 1.688 g/cm3 satellite DNA of Drosophila melanogaster is composed primarily of 359 base-pair units repeated in tandem. Most of these units contain a single cleavage site for both HaeIII and HinfI restriction endonucleases; however, some units lack one or both sites. Previously we had shown that the distribution of HaeIII and HinfI endonuclease sites varies widely between different regions of 1.688 g/cm3 satellite DNA; for example, some regions contain HaeIII sites in every unit and other regions (>10,000 base-pairs) contain no HaeIII sites (Carlson &; Brutlag, 1977). We have now cloned molecules of 1.688 g/cm3 satellite DNA which lack HaeIII sites and have shown that the absence of sites is caused by sequence variation rather than base modification. This result indicates that regions of 1.688 g/cm3 satellite DNA with different distributions of restriction sites differ in the sequence of their repeating units. We also show that a large fraction of the satellite DNA which is not cleaved by HaeIII endonuclease still contains HinfI endonuclease sites (and AluI sites) spaced about 359 base-pairs apart. However, one cloned segment lacking HaeIII sites was found to contain 33 tandem copies of a novel 254 base-pair unit. Sequence analysis showed that this 254 base-pair unit is homologous to the 359 repeat except for a 98 base-pair deletion. These data suggest that both units have evolved from a common ancestor and that each has subsequently become amplified into separate tandem arrays.  相似文献   

7.
Summary Streptomycetes are subject to a high degree of genetic instability. One manifestation of this phenomenon is the occurrence of tandemly reiterated DNA stretches within the chromosome. We describe the analysis of ten reiterated sequences observed in various ethidium bromide-treated streptomycin-sensitive and melanin-negative mutant strains of Streptomyces glaucescens. The repeated DNA units were 2.9 to 35 kb in lenght. No two sequences were identical. The amplified sequences occupied up to 45% of the total genomic DNA. Structural analysis of the cloned repeated DNA stretches by means of restriction enzymes and by cross hybridization revealed the presence of two chromosomal areas rich in DNA reiterations. In some cases reiterated regions were accompanied by nearby rearrangements.  相似文献   

8.
The programming capacity for the synthesis of human dihydrofolic acid reductase in a rabbit reticulocyte lysate has been found to be greatly enhanced in the polysomal poly(A)-containing RNA from a methotrexate-resistant human cell variant (6A3), as compared to the RNA from its parental line (VA2-B). A major fraction of this promoting activity is associated with a 3.8 × 103 base RNA species detectable as a band in the ethidium bromide-stained electrophoretic pattern of the RNA from 6A3 cells, but not in the RNA from VA2-B cells. Furthermore, sucrose gradient fractionation experiments have indicated that another substantial portion of the messenger activity is associated with RNA components around 103 bases in size. Double-stranded complementary DNA synthesized from total poly(A)-containing RNA of 6A3 cells has been size fractionated, and both large (1400 to 3800 base-pairs) and small size complementary DNA (600 to 1400 base-pairs) species have been used separately to transform Escherichia coli χ2282 with pBR322 as a vector. Of 76 transformants obtained with the large size complementary DNA, identified by a differential colony hybridization assay, none has expressed the dihydrofolic acid reductase coding sequence in E. coli, as judged by resistance to trimethoprim. By contrast, eight trimethoprim-resistant transformants have been obtained using the small size complementary DNA, and their plasmids have been shown to contain the dihydrofolic acid reductase coding sequence by restriction mapping and DNA sequencing; moreover, immunoautoradiographic experiments have revealed the presence in the extracts of two of these transformants of a protein with the electrophoretic mobility and immunoreactivity of human dihydrofolic acid reductase. Restriction mapping and DNA transfer hybridization experiments have further indicated that the inserts of the chimaeric plasmids conferring trimethoprim resistance upon the host and of those lacking this capacity cover together a complementary DNA region of about 3.35 × 103 base-pairs, in which the 564 base-pair dihydrofolic acid reductase coding stretch is located near the 5′ end of the sense strand. RNA transfer hybridization experiments using different cloned complementary DNA fragments as probes have shown the presence of three species of dihydrofolic acid reductase-specific messenger RNAs, with sizes of 3.8 × 103, 1.0 × 103 and 0.8 × 103 bases, differing in the length of the 3′ untranslated region, in the poly(A)-containing RNA from two methotrexate-resistant variants, 6A3 and 10B3, and, in greatly reduced amounts, in the RNA from their respective parents, VA2B and HeLa BU25.  相似文献   

9.
The size of DNA fragments complementary to ribosomal RNA was determined in SstI and HindIII restriction spectra from totally and partially cleaved yeast (Saccharomyces cerevisiae) DNA. The results indicated that the yeast ribosomal RNA gene cluster consists of 9000 base-pair long tandemly repeated units. Three different repeating units, which are overlapping with respect to their sequences, were cloned as SstI and HindIII fragments with λ vectors. The isolation of these clones was facilitated by genetic or physical preselection for those recombinant phage which contained DNA inserts in the expected size range. Both preselection methods gave about a 30-fold purification with respect to the λ-rDNA clones. A heteroduplex analysis of the clones obtained with a three-component HindIII vector showed that the center part of the λ genome carrying λ recombination and regulation genes (57 to 77% λ) can become inverted without apparent decrease of growth capacities.  相似文献   

10.
In the chicken genome there are middle repetitive DNA sequences with a clustered organization. Each cluster is composed of members of different families of repeated DNA sequences and usually contains only one member of each family. Many clusters have the same assortment of repeated sequences but they are in scrambled order from cluster to cluster. These clusters usually exceed 20 × 103 bases in length and comprise at least 10% of the repeated DNA of the chicken. The repeated sequences that are cluster components are extensively methylated. Methylation was detected by comparing HpaII and MspI digests of total DNA, where the occurrence of the sequence C-m5C-G-G is indicated when HpaII (cleaves C-C-G-G) fragments are larger than those generated by MspI (cleaves C-m5C-G-G or C-C-G-G). In hybridization experiments with Southern (1975) blots of total DNA digested with either HpaII or MspI, the cloned probes representing clustered repeated sequences showed a dramatic difference in the lengths of restriction fragments detected in the two digests. Many of the sequences that comprise these clusters are methylated in most of their genomic occurrences. There are patterns of methylation that are reproduced faithfully from copy to copy. The overall distribution of methylation within clusters seems to be regional, with long methylated DNA segments interrupted by specific undermethylated regions.  相似文献   

11.
Traditional morphological methods of Meloidogyne identification have been unsuccessful in distinguishing three South Carolina, USA Meloidogyne arenaria race 2 populations—Govan, Pelion, and Florence. These populations differ greatly in reproductive rate and aggressiveness on soybean hosts. Total genomic DNA from eggs of each population was digested with the restriction endonuclease Eco RI and Southern hybridization analyses were performed with single-copy and interspersed multi-copy cloned probes. Probes were isolated from a genomic library of Eco RI, M. arenaria DNA fragments cloned into pUC8. One probe, designated pE1.6A, when hybridized to Southern blots of M. arenaria genomic DNAs, displayed an interspersed repetitive pattern, and the RFLPs distinguished the Govan population from the Pelion and Florence populations. Another clone, pE6.0A, carrying moderately repeated sequences, distinguished the Pelion and Florence isolates. This communication demonstrates the utility of genomic RFLP analysis for distinguishing populations of the same race within the same species. To test the possible utility of these moderately repeated sequence probes for detecting the presence of nematode DNA in DNA samples from roots inoculated with varying numbers of nematodes, dot blot hybridization analyses were performed. It is possible to detect as few as 30 nematodes per root sample with these cloned probes.  相似文献   

12.
We describe the isolation of a cloned DNA segment carrying unique sequences from the white locus of Drosophila melanogaster. Sequences within the cloned segment are shown to hybridize in situ to the white locus region on the polytene chromosomes of both wild-type strains and strains carrying chromosomal rearrangements whose breakpoints bracket the white locus. We further show that two small deficiency mutations, deleting white locus genetic elements but not those of complementation groups contiguous to white, delete the genomic sequences corresponding to a portion of the cloned segment. The strategy we have employed to isolate this cloned segment exploits the existence of an allele at the white locus containing a copy of a previously cloned transposable, reiterated DNA sequence element. We describe a simple, rapid method for retrieving cloned segments carrying a copy of the transposable element together with contiguous sequences corresponding to this allele. The strategy described is potentially general and we discuss its application to the cloning of the DNA sequences of other genes in Drosophila, including those identified only by genetic analysis and for which no RNA product is known.  相似文献   

13.
Restriction analysis of the duplex replicative forms of four cloned M13 miniphage indicates that all species examined contain a single copy of the intergenic space between genes II and IV plus one or more copies of a portion of the genome extending from within gene IV to a site in the HaeIII G fragment within the intergenic space. Both the viral and the complementary strand origins of replication have been localized previously within the 160 base-pair HaeIII G fragment. Since reiteration of a portion of the HaeIII G fragment could possibly lead to phages having multiple copies of the origin of replication, we have determined the location of the viral strand origin-terminus in M13 miniphage by mapping the position of the discontinuity(ies) in mini-RFII3 molecules isolated during asymmetric viral strand synthesis. Limited repair of late life-cycle mini-RFII molecules with DNA polymerase I in the presence of labeled deoxynucleoside triphosphates followed by restriction analysis demonstrates that the discontinuity in the RFII is contained at a unique site within the single HaeIII G fragment. The absence of a discontinuity in the reiterated DNA sequence containing only a portion of the HaeIII G fragment indicates that the reiterations of the origin region do not include the entire sequence specifying the viral strand origin-terminus.  相似文献   

14.
Chromosome-specific organization of human alpha satellite DNA   总被引:23,自引:3,他引:20       下载免费PDF全文
Restriction endonuclease analysis of human genomic DNA has previously revealed several prominent repeated DNA families defined by regularly spaced enzyme recognition sites. One of these families, termed alpha satellite DNA, was originally identified as tandemly repeated 340- or 680-base pair (bp) EcoRI fragments that hybridize to the centromeric regions of human chromosomes. We have investigated the molecular organization of alpha satellite DNA on individual human chromosomes by filter hybridization and in situ hybridization analysis of human DNA and DNA from rodent/human somatic cell hybrids, each containing only a single human chromosome. We used as probes a cloned 340-bp EcoRI alpha satellite fragment and a cloned alpha satellite-containing 2.0-kilobase pair (kbp) BamHI fragment from the pericentromeric region of the human X chromosome. In each somatic cell hybrid DNA, the two probes hybridized to a distinct subset of DNA fragments detected in total human genomic DNA. Thus, alpha satellite DNA on each of the human chromosomes examined--the X and Y chromosomes and autosomes 3, 4, and 21--is organized in a specific and limited number of molecular domains. The data indicate that subsets of alpha satellite DNA on individual chromosomes differ from one another, both with respect to restriction enzyme periodicities and with respect to their degree of sequence relatedness. The results suggest that some, and perhaps many, human chromosomes are characterized by a specific organization of alpha satellite DNA at their centromeres and that, under appropriate experimental conditions, cloned representatives of alpha satellite subfamilies may serve as a new class of chromosome-specific DNA markers.  相似文献   

15.
We have identified and cloned two DNA regions which are highly reiterated in Bradyrhizobium japonicum serocluster 123 strains. While one of the reiterated DNA regions, pFR2503, is closely linked to the B. japonicum common and genotype-specific nodulation genes in strain USDA 424, the other, pMAP9, is located next to a Tn5 insertion site in a host-range extension mutant of B. japonicum USDA 438. The DNA cloned in pFR2503 and pMAP9 are reiterated 18 to 21 times, respectively, in the genomes of B. japonicum serocluster 123 strains. Gene probes from the reiterated regions share sequence homology, failed to hybridize (or hybridized poorly) to genomic DNA from other B. japonicum and Bradyrhizobium spp. strains, and did not hybridize to DNA from Rhizobium meliloti, Rhizobium fredii, Rhizobium leguminosarum biovars trifolii, phaseoli, and viceae, or Agrobacterium tumefacians. The restriction fragment length polymorphism hybridization profiles obtained by using these gene probes are useful for discriminating among serologically related B. japonicum serocluster 123 strains.  相似文献   

16.
The satellite II DNAs of the domestic ox Bos taurus and sheep Ovis aries have been sequenced, and that of the domestic goat Capra hircus partially sequenced. All three are related, and consist of repeat units of about 700 base-pairs. There is no evidence of internal repetition within these repeat units. When matched for maximum homology, the goat and sheep sequences show 83% homology, whereas the ox and sheep sequences share only 70% homology. Factors contributing to the uncertainty of the exact homology between these sequences are discussed, but the results are nevertheless consistent with their progenitor sequence being present in the common ancestor of cattle and sheep. Goat satellite II DNA is shown to contain another, unrelated, tandemly repeated sequence, which is composed of 22 base-pair repeat units. Both this sequence and a region of ox satellite II share good homology with the 11 base-pair progenitor sequence of ox 1.706 g/cm3 satellite DNA. It is suggested that this shared sequence could play a role in bovine satellite DNA amplification.  相似文献   

17.
A lambda phage library enriched in X(7) chromosomal material has been constructed from flow sorted chromosomes isolated from mice carrying the Cattanach translocation T(X;7)1Ct. The flow sorted fraction that was cloned contained 40% X(7) chromosomes, so that the resulting lambda phage library should be more than 10-fold enriched for X chromosomal DNA. Approximately 100,000 lambda phage clones were obtained; of these, at least 80% were recombinant. Three quarters of recombinants were positive for mouse repetitive DNA as detected either by phage plaque filter hybridization or by Southern blotting. Recombinant DNA inserts were prepared from some of the remaining nonrepetitive phage fraction. The X-chromosome specificity of cloned DNA inserts was tested by hybridization to DNA from mouse-hamster somatic cell hybrids that had retained all or most of the mouse X as the only mouse chromosome and by comparison of the extent of hybridization to DNA from male and female mice. Out of nine cloned unique sequence segments successfully examined thus far, two were presumably derived from the X. Possession of phage library highly enriched for mouse X DNA should facilitate molecular studies of the control of X chromosome gene expression.  相似文献   

18.
We have identified and cloned two DNA regions which are highly reiterated in Bradyrhizobium japonicum serocluster 123 strains. While one of the reiterated DNA regions, pFR2503, is closely linked to the B. japonicum common and genotype-specific nodulation genes in strain USDA 424, the other, pMAP9, is located next to a Tn5 insertion site in a host-range extension mutant of B. japonicum USDA 438. The DNA cloned in pFR2503 and pMAP9 are reiterated 18 to 21 times, respectively, in the genomes of B. japonicum serocluster 123 strains. Gene probes from the reiterated regions share sequence homology, failed to hybridize (or hybridized poorly) to genomic DNA from other B. japonicum and Bradyrhizobium spp. strains, and did not hybridize to DNA from Rhizobium meliloti, Rhizobium fredii, Rhizobium leguminosarum biovars trifolii, phaseoli, and viceae, or Agrobacterium tumefacians. The restriction fragment length polymorphism hybridization profiles obtained by using these gene probes are useful for discriminating among serologically related B. japonicum serocluster 123 strains.  相似文献   

19.
Fluorescence activated sorting of chromosomes from 49,XXXXY human lymphoblasts has been used to obtain DNA enriched for the human X. This DNA was cloned in lambda phage Charon 21A to obtain a library of approximately 60,000 pfu. Phage inserts free of human highly repeated DNA sequences are localized to different regions of the human X by two independent hybridization analyses. The first utilized comparative hybridization to rodent-human hybrid cell DNA samples containing all or known portions of the human X, while the second was based on hybridization dosage to DNA samples from human cell lines differing in the number of X chromosomes or X chromosome segments. Of five unique sequence inserts tested, three were X chromosome specific and were localized to regions Xpter leads to Xcen, Xql leads to Xq22 and Xq24 leads to Xqter, respectively. The library presented here represents a highly enriched source of human X chromosome-specific DNA sequences.  相似文献   

20.
We have analyzed the sequence organization of the central spacer region of the extrachromosomal ribosomal DNA from two strains of the acellular slime mold Physarum polycephalum. It had been inferred previously from electron microscopy that this region, which comprises about one third of the 60 kb3 palindromic rDNA, contains a complex series of inverted repetitious sequences. By partial digestion of end-labeled fragments isolated from purified rDNA and from rDNA fragments cloned in Escherichia coli, we have constructed a detailed restriction map of this region. The 11 kb of spacer DNA of each half molecule of rDNA contains the following elements: (a) two separate regions, one of 1.1 kb and one of 2.1 kb, composed of many direct repeats of the same 30 base-pair unit; (b) a region of 4.4 kb composed of a complex series of inverted repeats of a 310 base-pair unit; (c) another region of 1.6 kb composed of inverted repeats of the same 310 base-pair unit located directly adjacent to the center of the rDNA; (d) two copies of a unique sequence of 0.85 kb, which probably contains a replication origin. Some of the CpG sequences in the spacer resist cleavage by certain restriction endonucleases and thus appear to be methylated. The lack of perfect symmetry about the central axis and the arrangement of inverted repeated sequences explain the complex pattern of branches and forks of the fold-back molecules previously observed by electron microscopy. Comparison of the rDNA restriction maps from the two strains of Physarum suggests that the repeat units in the spacer are undergoing concerted evolution. We propose a model to explain the evolutionary origin of the several palindromic axes in the Physarum rDNA spacer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号