首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A mesophilic cellulolytic bacterium ( Clostridium strain C7) capable of N2 fixation and a non-cellulolytic bacterium ( Klebsiella strain W1), both isolated from freshwater environments rich in decaying plant material, were co-cultured in a chemically defined, vitamin-deficient medium containing cellulose as the carbon and energy source. In the co-culture, an extracellular cellulase complex produced by the Clostridium hydrolyzed cellulose to soluble sugars that served as fermentable substrates for the Klebsiella . In turn, the Klebsiella excreted growth factors, identified as biotin and p -aminobenzoic acid, which were required by the Clostridium . Furthermore, demonstration of NH4+-repressible acetylene reduction by co-cultures growing in medium lacking combined nitrogen showed that the Clostridium fixed N2, thus allowing growth of the Klebsiella , which was not a nitrogen fixer. The mutualistic relationships observed in the co-cultures may be representative of interactions that take place in natural environments in which cellulose-containing plant materials are biodegraded.  相似文献   

2.
In the course of a study on the bacterial degradation of plant cell wall polysaccharides, we observed that growing cells of motile cellulolytic bacteria accumulated, without attachment, near cellulose fibers present in the cultures. Because it seemed likely that the accumulation was due to chemotactic behavior, we investigated the chemotactic responses of one of the above-mentioned bacteria (Cellulomonas gelida ATCC 488). We studied primarily the responses toward cellobiose, which is the major product of cellulose hydrolysis by microorganisms, and toward hemicellulose hydrolysis products. We found that cellobiose, cellotriose, D-glucose, xylobiose, and D-xylose, as well as other sugars that are hemicellulose components, served as chemoattractants for C. gelida, as determined by a modification of Adler's capillary assay. Competition and inducibility experiments indicated that C. gelida possesses at least two types of separately regulated cellobiose chemoreceptors (Cb1 and cellobiose, cellotriose, xylobiose, and D-glucose, and it is constitutively synthesized. The presence in C. gelida of a constitutive response toward cellobiose and of at least two distinct cellobiose chemoreceptors has implications for the survival of this cellulolytic bacterium in nature. A possible mechanism for cellobiose-mediated bacterial chemotaxis toward cellulose is proposed. We suggest that, in natural environments, motile cellulolytic bacteria migrate toward plant materials that contain cellulose and hemicellulose by swimming up cellobiose concentration gradients and/or concentration gradients of other sugars (e.g., xylobiose, D-xylose, and D-glucose) formed by enzymatic hydrolysis of plant cell wall polysaccharides.  相似文献   

3.
Abstract Adhesion to cellulose of five strains of mesophilic, cellulolytic clostridia , isolated from a municipal waste digestor, was found to be a reversible phenomenon. The type of attachment for the five strains conformed to a multilayer adhesion. In a first step, attachment to the adhesion site occurred by cell-cellulose interaction. In a second step, cell-cell interactions were identified. The five strains adhered slightly better to magazine paper and Whatman No. 1 filter paper than to newspaper and cardboard. Two strains, C401 and A22, were studied in more detail. The two strains, harvested in stationary phase, presented a heterogeneous population which could be separated: (i) as 'unbound' cells, corresponding to cells remaining in suspension from cellulose-grown cultures; and (ii) as 'bound' cells, coming from two successive washes with 50 mM Tris HCl, pH 7.0, which released 'bound' cells. In adhesion measurements, eluted cells ('bound' cells) adhered better to the cellulose than the 'unbound' cells. Strain C401 adhered better than strain A22 to the cellulose: 1.9-fold for the 'bound' cells and 3.6-fold for the 'unbound' cells. Adhesion of the two isolates was enhanced by the presence of calcium (10 mM). Cellobiose and glucose had no effect on strain A22 adhesion. Conversely, adhesion of strain C401 to cellulose was enhanced by cellobiose at a concentration of 1.5 g I−1, but 85% inhibited by a concentration of 5.0 g I−1. The two strains adhered to the same site on Whatman filter paper and unspecific interactions between the two strains occur.  相似文献   

4.
5.
An iron-oxidizing bacterium strain, OKM-9, isolated from mud obtained from the bottom of a pond, Minamikata Ohike, in Okayama prefecture, Japan, grew well in an FeSO4 x 7H2O (3%)-medium (pH 2.5) with 0.03% yeast extract. However, the strain could not grow either in an FeSO4 x 7H2O (3%)-medium without yeast extract or in a yeast extract (0.03%)-medium (pH 2.5) without Fe2+. The strain did not use elemental sulfur as an energy source and did not have the activity to fix carbon dioxide. Strain OKM-9 could grow in an FeSO4 x 7H2O (3%)-medium with twenty different L-amino acids instead of yeast extract. Incorporation of [U-14C] glutamic acid into the cells was dependent on the energy produced by the oxidation of Fe2+. Strain OKM-9 did not grow heterotrophically using amino acids and hexoses as a sole energy and carbon source. The results that strain OKM-9 absolutely required ferrous iron (Fe2+) as a sole energy source and yeast extract or L-amino acids as a carbon source for growth strongly suggest that the strain is a mixotrophic iron-oxidizing bacterium. Strain OKM-9 was a gram-negative and rod-shaped bacterium (0.4-0.6 x 1.6-2.2 microm) and the mean G + C content of the DNA of the bacterium was 59.6 mol%. The optimum temperature and pH for growth were 30 degrees C and 2.1, respectively. However, the strain could not grow at temperatures above 45 degrees C. Iron-oxidizing activities of strain OKM-9 measured with intact cells and the plasma membrane were 14.3 and 5.7 microl O2 uptake/mg protein/min, respectively. The pyridine ferrohemochromes prepared from the plasma membrane of this strain showed absorption peaks characteristic of alpha-bands of heme a and b, but not heme c, at 587 and 557 nm, respectively. The results suggest that the cytochromes composing an iron-oxidation system of strain OKM-9 are different from those of the well-known mesophilic iron-oxidizing bacteria Thiobacillus ferrooxidans and Leptospirillum ferrooxidans.  相似文献   

6.
Summary A highly cellulolytic Cellulomonas mutant, CS1-17, has been shown to be improved over the original parent strain, CS1-1, with respect to xylanase and -xylosidase activities. From induction studies during growth on xylan, crystalline cellulose and carboxymethylcellulose it can be deduced that, although both activities have been similarly affected by the mutation, xylanolytic activity is distinct from cellulolytic activity; however, the possibility of some cross-specificity has not been eliminated.  相似文献   

7.
Cellulomonas sp. ATCC 21399 produced extracellular enzyme activities against Avicel, H(3)PO(4)-swollen Avicel, carboxymethylcellulose, (1-3, 1-4)-beta-D-heteroglucan, xylan, galactomannan, and amylose drying growth on microcrystalline cellulose. No extracellular cellobiase activity was produced. Crossed immunoelectrophoresis of the crude extracellular enzyme system revealed 15 immunologically distinct immunoprecipitates. The immunoprecipitates of endoglucanase A, endoglucanase B and the xylanase appeared heterogeneous with several optima, whereas the immunoprecipitates of endoglucanase C and the amylase appeared homogeneous. The heterogeneity of endoglucanase A, endoglucanase B and xylanase was also visualized using electrofocusing-immunoelectrophoresis. Electro-focusing could resolve the activity against carboxymethylcellulose into six peaks, whereas only one peak of activity against Avicel was observed. The later peak coincided with the major peak of activity against carboxymethylcellulose with isoelectric point between pH 4.0-5.0.  相似文献   

8.
Avicelase assay of gel slices after non-denaturing polyacrylamide gel electrophoresis of concentrated supernatants from Cellulomonas fermentans revealed four active bands. One of them corresponded to the principal active band on CM-cellulose. Among the three others, at least one did not correspond to any active band on CM-cellulose and might reflect the presence of an exoglucanase (EC 3.2.1.91). The active band on CM-cellulose was composed of two endoglucanases (EC 3.2.1.4), called CFA and CFB, which we purified by the means of DEAE-Trisacryl chromatography and high performance liquid chromatography (anion exchange chromatography and gel chromatography). These two monomeric enzymes differ in their molecular weights (40,000 and 57,000 for CFA and CFB, respectively) and in their catalytic constants in the reaction with CM-cellulose (Km were 1.5 g/l and 59 g/l for CFA and CFB, respectively), but have similar modes of action on this substrate and similar substrate specificities.  相似文献   

9.
The major carotenoid pigments of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum, were identified as zeaxanthin, beta-cryptoxanthin, and beta-carotene. Analysis was based on ultraviolet-visible spectroscopy, mass spectroscopy, and reversed-phase HPLC. Photoacoustic spectroscopy of intact bacterial cells revealed that the bulk of the pigments in S. antarcticus and S. multivorum was associated with the cell membrane. In vitro studies with synthetic membranes of phosphatidylcholine demonstrated that the major pigment was bound to the membranes and decreased their fluidity. The relative amounts of polar pigments were higher in cells grown at 5 degrees C than in cells grown at 25 degrees C. In the mesophilic strain, the synthesis of polar carotenoids was quantitatively less than that of the psychrotolerant strain.  相似文献   

10.
Adhesive properties of a recently isolated, mesophilic, cellulolytic Clostridium (strain A22) and ofClostridium cellulolyticum (ATCC 35319) were described. For study of these properties, a method with Whatman No. 1 filter paper was developed, allowing faster kinetic analysis measuring unbound cells. This method was confirmed with [methyl-3H] thymidine to measure directly bound cells. The results of kinetic analysis indicated for the two clostridia a two-step adhesion process. In the first step, cell-cellulose interaction was observed. In the second step, cell-cell interaction was determined with an aggregation of cells away from the surface. This result was confirmed by scanning electron microscopy. Competition between strain A22 andC. cellulolyticum for adhesion sites was investigated. The two clostridia have the same specific adhesion sites was investigated. The two clostridia have the same specific adhesion sites on cellulose (filter paper), and unspecific interactions between two strains occur.  相似文献   

11.
Ten obligately anaerobic, cellulolytic mesophilic bacteria were isolated from a municipal solid waste digestor used for biogas production. The isolates were rod-shaped, spore-forming bacteria in anaerobic conditions, and stained Gram-positive in young cultures, and hence were identified asClostridium. Small regular translucent and unpigmented colonies were observed on cellulose plates. The strains were gelatinase-negative, hydrolyzed esculin and starch, and fermented xylose and arabinose. The lecithinase, lipase, and indole tests were negative. The major fermentation products from cellulose included ethanol and acetate. The morphological and other biochemical characteristics indicated that these clostridia did not correspond to any previously described species. All the strains produced high activities of extracellular cellulases in cellulose media and degraded paper. Offprint requests to: L. Benoit.  相似文献   

12.
13.
【目的】分离高效降解纤维素的嗜热厌氧菌,通过与嗜热产乙醇菌株联合培养的方式,为生产纤维素乙醇提供微生物资源。【方法】利用厌氧分离技术从降解纤维素的马粪富集物中分离到一株嗜热厌氧细菌HCp。采用形态学观察、生理生化鉴定、结合16S rDNA序列的系统发育学分析确定该菌株的分类地位,利用DNS酶活分析方法测定此分离菌株的酶学性质。【结果】分离菌株HCp革兰氏染色阴性,直杆,细胞单个或成对出现,菌体大小为(0.35-0.50)μm×(2.42-6.40)μm,严格厌氧,形成芽胞,能运动,对新霉素有一定的抗性。此菌能利用滤纸纤维素、纤维素粉、微晶纤维素、脱脂棉和水稻秸秆、明胶等,还可以利用葡萄糖、纤维二糖、木糖、木聚糖、果糖、蔗糖、核糖、半乳糖、麦芽糖、山梨糖、海藻糖、蜜二糖、甘露糖等。该菌株在pH6.5-8.5、温度35-70℃、盐浓度0%-1.0%范围内利用纤维素生长,最适pH为6.85,最适温度为60℃,最适NaCl浓度为0.2%,最佳生长条件下,在10 d内滤纸纤维素降解率可达90.40%。在HCp的纤维小体中,滤纸酶、羧甲基纤维素酶、β-葡萄糖苷酶、木聚糖酶的最适作用温度分别为70℃、70℃、70℃、60℃,并且羧甲基纤维素酶具有较高的热稳定性。部分长度的16S rDNA序列分析表明,分离菌株HCp与Acetivibrio cellulolyticus、A.cellulosolvens相似性为97.5%。【结论】分离菌株HCp是从马粪富集物中分离到的一株嗜热厌氧细菌,该菌具有较强的降解纤维素能力,生长温度范围广,酶的热稳定性好,纤维素底物利用广泛等特性,为纤维素降解产乙醇提供了良好的材料。  相似文献   

14.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.  相似文献   

15.
It was shown that the association of probiotic bacteria of the genuses Bacillus and Cellulomonas form biolayers on the surface of beet marc particles. The positive effect of a fodder additive that contained the biolayer on the basis of a phytomatrix on the growth and development of young rabbits was shown. Feeding of animals with a mixed fodder that contained 0.1% preparation resulted in stimulation of digestion of all components of the food. Among other components of the mixed fodder, cellulose was digested most effectively. An increase in the biomass of symbiotic bacteria and enzymatic activity in the blindgut chymus was also observed. The positive nitrogen balance demonstrated an increase in the nitrogen content in animals and a decrease of its losses with excretion. The mechanism of response of the rabbit’s organism to introduction of the complex probiotic preparation into the digestive tract is discussed.  相似文献   

16.
By hybridization experiments with three cloned fragments carrying cellulase genes ofClostridium cellulolyticum, we tried to differentiate 10 cellulolytic mesophilic clostridia, isolated from a municipal solid waste digestor. On the basis of hybridization experiments, three major groups were found among the 10 isolates. The two endoglucanase genes,cel CCA andcel CCB ofC. cellulolyticum, hybridized with nine strains of our isolates, suggesting homology and widespread distribution of these genes. Withcel CCA the strain A31 exhibited a different pattern. In contrast to these nine strains, the strain A11 was found to share no or very weak homology with these two probes, which indicated that this strain of cellulolytic clostridia possesses nonidentical cellulase complex. None of these new strains hybridized withnif genes, indicating that these clostridia did not appear to be nitrogen-fixing bacteria. With other biochemical characteristics, we found that these bacteria appeared to be different from the presently known mesophilic cellulolytic clostridia.  相似文献   

17.
The gene cbhA from the cellulolytic bacterium Cellulomonas fimi encodes a protein of 872 amino acids designated cellobiohydrolase A (CbhA). Mature CbhA contains 832 amino acid residues and has a predicted molecular mass of 85 349 Da. It is composed of five domains: an N-terminal catalytic domain, three repeated sequences of 95 amino acids, and a C-terminal cellulose-binding domain typical of other C. fimi glycanases. The structure and enzymatic activities of the CbhA cataiytic domain are closely related to those of CBH ll, an exocelloblohydrolase in the glycosyl hydrolase family B from the fungus Trichoderma reesel. CbhA is the first such enzyme to be characterized in bacteria. The data support the proposal that extended loops around the active site distinguish exohydrolases from endohydrolases in this enzyme family.  相似文献   

18.
Extremophiles - A cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Psychromonas marina (PmIDH), showed a high degree of amino acid sequential identity (64%) to a...  相似文献   

19.
20.
Summary A cellulolyticm obligately anaerobic, extreme thermophile (strain NA10) was isolated from an alkaline hot spring in Nagano Prefecture, Japan. The microorganism was a non-spore-forming, flagellated rod which had a negative reaction to Gram stain, and occurred singly or in pairs. The growth temperature was between 50° C and 85° C with the optimum at 75° C, and the growth pH was between 6.0 and 9.5 with the optimum at 8.1. The anaerobe characteristically fermented cellulose, and produced acetic acid, H2, CO2 (main products) and lactic acid (minor product). The DNA had a base composition of 37.7 mol% guanine+cytosine content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号