首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Tumor necrosis factor α (TNFα) is a cytokine, produced by lymphocytes and monocytes, with cytotoxic activity against some but not all tumor cell lines. Resistance to the cytolytic effects of TNFα has been reported in cell lines with autocrine TNFα production. The purpose of this study was to investigate whether human primary malignant melanoma and tumor infiltrating lymphocytes produce TNFα in vivo. Optimal conditions for in situ hybridization for TNFα mRNA in paraffin-embedded tissue were established. Analysis of 13 primary malignant melanomas and 3 metastatic lesions with different degrees of immunohistochemical TNFα positivity demonstrated that, in some tumors, both melanoma cells and leukocytes contained TNFα mRNA and protein. These findings demonstrate variable production of TNFα in primary and metastatic melanoma in vivo.The previously described resistance to TNFα cytolytic activity may, therefore, be clinically important. Received: 18 December 1996 / Accepted: 12 June 1997  相似文献   

2.
Gangliosides have long been implicated in multiple pathologies affecting the central nervous system. Empirical studies have suggested the possibility that gangliosides, particularly GD3, work in tandem with pro-inflammatory cytokines, especially tumor necrosis factor alpha (TNFα), to initiate or facilitate cell death in the CNS. As a step toward unraveling the metabolic pathways activated in the pathogenesis of brain cell death, we have surveyed gene expression for a host of cytokines and chemokines in primary brain cell cultures exposed to GD3, GD1b, and TNFα for 24 h. An initial screen of 98 genes on a focused mini-array revealed the expression of at least 28 genes related to cell growth, death, or inflammation in our system of mixed cells cultured from neonatal rat brains. Clear evidence of a differential response to the gangliosides or TNFα was seen in 12 genes. Quantitative PCR was used to validate the response of six of these genes. We found that both GD3 and GD1b, but not TNFα, up-regulated expression of macrophage inflammatory protein 3 (MIP3A) and interleukin-1 receptor 1 (IL1R1), but down-regulated fibroblast growth factor 13 (FGF13). The expression of FGF receptor activating protein 1 (FRAG1) and interleukin-3 receptor alpha (IL3RA) was down-regulated by GD3. Exposure to TNFα resulted in a dramatic up-regulation of IL3RA and chemokine ligand 2 (CCL2), both of which have been implicated in multiple sclerosis. Our results provide strong evidence that the expression of these genes might be critical links in the metabolic cascades leading to cell degeneration and death in the brain.  相似文献   

3.
Splenic sinus endothelial cells, which adhere through tight and adherens junctions, regulate the passage of blood cells through the splenic cord. The objective of this study was to assess the localization of tight junctional proteins, claudin-5 and ZO-1 in the sinus endothelial cells of rat spleen and to characterize spatial and functional relationships between tight and adherens junctions. Immunofluorescence microscopy of tissue cryosections demonstrated that claudin-5, ZO-1, and α-catenin were distinctly localized in the junctional regions of adjacent endothelial cells. Immunogold electron microscopy demonstrated claudin-5 localized in the tight-junctional fused membranes of adjacent endothelial cells. Immunogold labeling for ZO-1 was localized not only in the tight-junctional-fused membranes of endothelial cells but also in the junctional membrane. α-Catenin was intermittently localized along the juxtaposed junctional membranes of adjacent endothelial cells. Double-staining immunogold microscopy for claudin-5 and ZO-1, claudin-5 and VE-cadherin, ZO-1 and VE-cadherin, and ZO-1 and α-catenin demonstrated that ZO-1 was closely localized to VE-cadherin and α-catenin in their juxtaposed membranes of endothelial cells. Thus, ZO-1 might play an important role in regulating the cell–cell junctions of sinus endothelial cells for blood–cell passage through splenic cords. This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

4.
IL-32 is a newly described cytokine in the human found to be an in vitro inducer of tumor necrosis factor alpha (TNFα). We examined the in vivo relationship between IL-32 and TNFα, and the pathologic role of IL-32 in the TNFα-related diseases – arthritis and colitis. We demonstrated by quantitative PCR assay that IL-32 mRNA was expressed in the lymphoid tissues, and in stimulated peripheral T cells, monocytes, and B cells. Activated T cells were important for IL-32 mRNA expression in monocytes and B cells. Interestingly, TNFα reciprocally induced IL-32 mRNA expression in T cells, monocyte-derived dendritic cells, and synovial fibroblasts. Moreover, IL-32 mRNA expression was prominent in the synovial tissues of rheumatoid arthritis patients, especially in synovial-infiltrated lymphocytes by in situ hybridization. To examine the in vivo relationship of IL-32 and TNFα, we prepared an overexpression model mouse of human IL-32β (BM-hIL-32) by bone marrow transplantation. Splenocytes of BM-hIL-32 mice showed increased expression and secretion of TNFα, IL-1β, and IL-6 especially in response to lipopolysaccharide stimulation. Moreover, serum TNFα concentration showed a clear increase in BM-hIL-32 mice. Cell-sorting analysis of splenocytes showed that the expression of TNFα was increased in resting F4/80+ macrophages, and the expression of TNFα, IL-1β and IL-6 was increased in lipopolysaccharide-stimulated F4/80+ macrophages and CD11c+ dendritic cells. In fact, BM-hIL-32 mice showed exacerbation of collagen-antibody-induced arthritis and trinitrobenzen sulfonic acid-induced colitis. In addition, the transfer of hIL-32β-producing CD4+ T cells significantly exacerbated collagen-induced arthritis, and a TNFα blockade cancelled the exacerbating effects of hIL-32β. We therefore conclude that IL-32 is closely associated with TNFα, and contributes to the exacerbation of TNFα-related inflammatory arthritis and colitis.  相似文献   

5.

Background  

The tight junction is a dynamic structure that is regulated by a number of cellular signaling processes. Occludin, claudin-1, claudin-2 and claudin-3 are integral membrane proteins found in the tight junction of MDCK cells. These proteins are restricted to this region of the membrane by a complex array of intracellular proteins which are tethered to the cytoskeleton. Alteration of these tight junction protein complexes during pathological events leads to impaired epithelial barrier function that perturbs water and electrolyte homeostasis. We examined MDCK cell barrier function in response to challenge by the proinflammatory cytokines tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ).  相似文献   

6.
A tumor necrosis factor-alpha (TNFα)-like gene from Ciona intestinalis (CiTNFα-like) body wall challenged with bacterial lipopolysaccharide (LPS) was cloned and sequenced 4 h after LPS inoculation. An open reading frame of 936 bp encoding a propeptide of 312 amino acids (35.4 kDa) displaying a transmembrane domain from positions 7 to 29, a TACE cleavage site, and a mature peptide domain of 185 amino acids (20.9 kDa), was determined with a predicted isoelectric point of 9.4. The phylogenetic tree based on deduced amino acid sequences of invertebrate TNF-like protein and vertebrate TNFs supported the divergence between the ascidian and vertebrate TNF families, whereas D. melanogaster Eiger A and B TNF-like sequences were distinctly separated from the chordate TNFs. Thus, the ascidian TNFα-like cytokine was upregulated by in vivo LPS challenge supporting its pro-inflammatory role. In the pharynx, increased expression levels were found following analysis by real-time polymerase chain reaction, whereas in situ hybridization assay showed positive hemocytes both in the tissue and in circulating hemocytes. Finally, Western blot with monoclonal antibodies disclosed human TNFα epitopes in a 15-kDa protein component of the hemolymph serum and in a 43-kDa protein contained in the hemocyte lysate supernatant prepared in the presence of detergents. Both soluble and hemocyte-bound CiTNFα-like protein therefore appeared to be modulated by the LPS challenge. This work was supported by a research grant from the Italian Ministry of University and Scientific Research (PRIN 2006 to N. Parrinello), co-funded by the University of Palermo.  相似文献   

7.
8.
Claudin-5 is a transmembrane protein reported to be primarily present in tight junctions of endothelia. Unexpectedly, we found expression of claudin-5 in HT-29/B6 cells, an epithelial cell line derived from human colon. Confocal microscopy showed colocalization of claudin-5 with occludin, indicating its presence in the tight junctions. By contrast, claudin-5 was absent in the human colonic cell line Caco-2 and in Madin-Darby canine kidney cells (MDCK sub-clones C7 and C11), an epithelial cell line derived from the collecting duct. To determine the contribution of claudin-5 to tight junctional permeability in cells of human origin, stable transfection of Caco-2 with FLAG-claudin-5 cDNA was performed. In addition, clone MDCK-C7 was transfected. Synthesis of the exogenous FLAG-claudin-5 was verified by Western blot analysis and confocal fluorescent imaging by employing FLAG-specific antibody. FLAG-claudin-5 was detected in transfected cells in colocalization with occludin, whereas cells transfected with the vector alone did not exhibit specific signals. Resistance measurements and mannitol fluxes after stable transfection with claudin-5 cDNA revealed a marked increase of barrier function in cells of low genuine transepithelial resistance (Caco-2). By contrast, no changes of barrier properties were detected in cells with a high transepithelial resistance (MDCK-C7) after stable transfection with claudin-5 cDNA. We conclude that claudin-5 is present in epithelial cells of colonic origin and that it contributes to some extent to the paracellular seal. Claudin-5 may thus be classified as a tight-junctional protein capable of contributing to the "sealing" of the tight junction.  相似文献   

9.
Depletion of skeletal muscle protein mainly results from enhanced protein breakdown, caused by activation of proteolytic systems such as the Ca2+-dependent and the ATP-ubiquitin-dependent ones. In the last few years, enhanced expression and bioactivity of myostatin have been reported in several pathologies characterized by marked skeletal muscle depletion. More recently, high myostatin levels have been associated with glucocorticoid-induced hypercatabolism. The search for therapeutical strategies aimed at preventing/correcting protein hypercatabolism has been directed to inhibit humoral mediators known for their pro-catabolic action, such as TNFα. The present study has been aimed to investigate the involvement of TNFα in the regulation of both myostatin expression and intracellular protein catabolism, and the possibility to interfere with such modulations by means of amino acid supplementation. For this purpose, C2C12 myotubes exposed to TNFα in the presence or in the absence of amino acid (glutamine or leucine) supplementation have been used. Myotube treatment with TNFα leads to both hyperexpression of the muscle-specific ubiquitin ligase atrogin-1, and enhanced activity of the Ca2+-dependent proteolytic system. These changes are associated with increased myostatin expression. Glutamine supplementation effectively prevents TNFα-induced muscle protein loss and restores normal myostatin levels. The results shown in the present study indicate a direct involvement of TNFα in the onset of myotube protein loss and in the perturbation of myostatin-dependent signaling. In addition, the protective effect exerted by glutamine suggests that amino acid supplementation could represent a possible strategy to improve muscle mass.  相似文献   

10.
In chronic inflammatory diseases, such as rheumatoid arthritis, inflammation acts as an independent cardiovascular risk factor and the use of anti-inflammatory drugs, such as anti-tumor necrosis factor alpha (anti-TNFα), may decrease this risk. The phagocytosis of oxidized low density lipoproteins (LDLs) accumulated in the subendothelium by mononuclear cells influences atherosclerosis and depends on CD36 expression. We investigated the role of TNFα and adalimumab, a human anti-TNFα monoclonal antibody widely used in human pathology, in CD36 expression in human monocytes. Human monocytes were prepared by adherence from whole-blood buffy-coat fractions from healthy donors. CD36 expression was assessed by RT-PCR and flow cytometry, with various TNFα or adalimumab concentrations. Implication of peroxisome proliferator-activated receptor (PPAR)γ in the regulation of CD36 expression was assessed using specific inhibitor or gel shift assays. The impact of redox signaling was investigated using quantification of reactive oxygen species, antioxidant and a NADPH oxidase inhibitor. The F(ab')2 fragment of adalimumab was isolated and its effect was analyzed. TNFα inhibits both CD36 membrane expression and mRNA expression. This inhibition involves a reduction in PPARγ activation. In contrast, adalimumab increases both CD36 membrane expression and mRNA expression. This induction is independent of the Fc portion of adalimumab and involves redox signaling via NADPH oxidase activation. CD36 expression on human monocytes is inhibited by TNFα and independently increased by adalimumab. These data highlight that pro-inflammatory cytokines and their specific neutralization influence the expression of cellular receptors implicated in atherosclerosis. Further studies are needed to investigate the clinical implications of these results in accelerated atherosclerosis observed in rheumatoid arthritis.  相似文献   

11.
12.
 To explore the mechanisms of immuno-modulatory activities of bleomycin, we investigated interferon γ (IFNγ) mRNA expression, tumor necrosis factor α (TNFα) production, nitric oxide (NO) production and macrophage tumoricidal activities in rats bearing KDH-8 hepatoma cells, which secreted a large amount of transforming growth factor β (TGFβ), and these processes in KDH-8 tumor-bearing rats treated with bleomycin. We found that IFNγ mRNA expression, TNFα production, NO production and macrophage cytotoxic activities were lower in the KDH-8-bearing rats than in normal rats. On the other hand, low-dose bleomycin restored the macrophage cytotoxic activities, NO production, IFNγ mRNA expression and TNFα production in the KDH-8-bearing rats. In vitro experiments showed that KDH-8-derived TGFβ decreased the IFNγ mRNA expression and TNFα production in splenocytes, and NO production in peritoneal macrophages. These results suggest that low-dose bleomycin restored the cytokine production and macrophage tumoricidal activities in the KDH-8-bearing rats by decreasing KDH-8-derived TGFβ. Received: 14 October 1996 / Accepted: 22 July 1997  相似文献   

13.
The proinflammatory cytokine tumor necrosis factor-alpha (TNFα) exists naturally in two forms, a 26 kDa transmembrane form (TM-TNFα), and a 17 kDa secretory form (S-TNFα). The biological roles for each of these forms of TNFα in tumor killing have not been completely elucidated. Therefore, in this study, three different recombinant retroviral vectors, wild-type TNFα, solely secretable TNFα mutant, and uncleavable transmembrane TNFα mutant, were constructed by molecular techniques and stably transfected into a murine hepatic carcinoma cell line (H22). TNFα, either secreted in cell culture supernatants by secretable TNFα mutant- or wild-type TNFα-producing tumor cells, or as a treansmembrane form expressed on the cell surface of uncleavable TNFα mutant- or wild-type TNFα-synthesizing tumor cells, was demonstrated to be cytotoxic against the TNF sensitive L929 cell line. The H22 cells transfected with the three different forms of TNFα were shown to kill parental H22 cells in an in vitro cytotoxicity assay [effect/target (E/T) ratio-dependent manner], and their maximal killing rates were ~38–43% at E/T ratio of 5:1. The injection of total 2.5×105 mixed cells containing transfected and parental H22 tumor cells at different ratios into syngeneic mice resulted in the inhibition of tumor growth with a maximal inhibition rates of ~57~72% at E/T ratio of 5:1. A transient weight loss was found in mice bearing solely secretable TNFα mutant producing tumors, whereas no obvious side effects were seen in mice bearing uncleavable TNFα mutant or wild-type TNFα expressing tumors. Finally, we demonstrate that tumors secreting S-TNFα promoted the subsequent infiltration of CD4+ T cells, and to a lesser extent CD8+ T cells, to the tumor site. The TM-TNFα expressing tumors up-regulated Fas (CD95) expression and inhibited the expression of tumor metastasis associated molecule CD44v3. These results suggest that S-TNFα and TM-TNFα kill cancer cells in vivo through different mechanisms of action. We conclude that the non-secreted form of TNFα may be an ideal candidate for cancer gene therapy due to its therapeutic potential and lowered side effect profile.  相似文献   

14.
NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is involved in insulin resistance. In the present study, the mRNA expression of NYGGF4 homologous genes was examined in the 3T3-L1 cell line. The NYGGF4 mRNAs were expressed at low levels in the 3T3-L1 preadipocytes. During the conversion of 3T3-L1 preadipocytes to adipocytes, the expression of NYGGF4 mRNA was upregulated. On the 8th day after induction of differentiation, the NYGGF4 mRNA levels peaked and remained high. Free fatty acids (FFA) and tumor necrosis factor-α (TNFα) could upregulate NYGGF4 mRNA expression in 3T3-L1 adipocytes, while interleukin-6 (IL-6), leptin, and resistin exerted an inhibitory effect. The results suggest that the expression of NYGGF4 mRNA is affected by a variety of factors that are related to insulin sensitivity. It is likely that NYGGF4 may be an important mediator in the development of obesity-related insulin resistance.  相似文献   

15.
The cytokine and potent angiogenic factor vascular endothelial growth factor (VEGF) plays an important role in airway remodelling in various airway diseases such as idiopathic pulmonary fibrosis, pulmonary hypertension, lung cancer, asthma and chronic obstructive pulmonary disease (COPD). The effect of cigarette-smoking on VEGF expression, the modulatory role of extracellular signal-regulated kinase (ERK)-1,-2, p38mitogen-activated protein kinase (MAPK), histone acetylation and the anti-inflammatory effect of dexamethasone on TNFα-induced VEGF expression were examined in human airway smooth muscle cells (HASMC) of five non-smokers, 17 smokers without airflow limitation and 15 smokers with COPD. TNFα increased VEGF expression 5.4-fold and 4.0-fold in HASMC from non-smokers and smokers without airflow limitation, respectively, but only 2.5-fold in HASMC from smokers with COPD compared with non-stimulated HASMC. VEGF production was dependent on phosphorylation of ERK-1,-2 and p38MAPK, as was shown by examining the effects of PD 098059 (10 μM), an inhibitor of the upstream activator of MAPKkinase (MKK)-1, and SB 203580 (10 μM), an inhibitor of p38MAPK; there were no differences between non-smokers, smokers without airflow limitation and smokers with COPD in this respect. Dexamethasone (DEX; 10−12–10−4 M) reduced TNFα-induced phosphorylation of ERK-1/-2 and prevented TNFα-induced VEGF generation without differences between non-smokers, smokers with and without COPD. There was an additional inhibitory effect of DEX (10−12 M) on VEGF-release when PD 098059 was added. The basal and TNFα-induced acetylation status of the VEGF-promoter (chromatin immunoprecipitation [ChIP] assay) was increased in HASMC from smokers with COPD compared with smokers without airflow limitation and non-smokers. In comparison to non-stimulated HASMC, TNFα decreased the acetylation status of the VEGF-promoter by ∼46% and ∼43% in HASMC from non-smokers and smokers without COPD compared with ∼68% in HASMC from smokers with COPD. The data suggest that HASMC express VEGF in response to TNFα and that this may be reduced in HASMC of smokers with COPD in a smoking-independent manner. VEGF expression is directly modulated by phosphorylation of ERK-1,-2 and p38MAPK and by histone acetylation and the acetylation status of the VEGF gene is increased in HASMC of smokers with COPD in a smoking-independent manner. TNFα reduced the acetylation status of the VEGF promoter in HASMC.  相似文献   

16.
We previously reported that Treponema denticola, a periodontal pathogen, suppressed the expression of human β-defensins (HBDs) and IL-8 in human gingival epithelial cells. To clarify the receptor(s) involved in the suppression of HBD-2, immortalized gingival epithelial (HOK-16B) cells were infected with live or heat-killed T. denticola for 24 h, and the expression of HBD-2 was examined by real-time RT-PCR. Live T. denticola, but not heat-killed bacteria, suppressed the expression of HBD-2 about 40%. Time courses of suppression revealed that T. denticola suppressed HBD-2 expression only at late time points, which was accompanied with the suppression of TNFα production. Neutralization of TNFα with an antibody abrogated the suppressive effect of T. denticola on HBD-2. Accordingly, heat-killed T. denticola did not suppress TNFα production. Knock-down of toll-like receptor (TLR) 2 via RNA interference reversed the suppressive effect of T. denticola on the expression of HBD-3, but not on the production of TNFα. Collectively, T. denticola suppresses the expression of HBD-2 in gingival epithelial cells by inhibiting the TLR2 axis and TNFα production, which may contribute to the pathogenesis of periodontitis by T. denticola.  相似文献   

17.
 Previously we reported the malignant progression of QR-32, a regressor-type tumor clone, following co-implantation with foreign bodies (gelatin sponge or plastic plate) in normal syngeneic C57BL/6 mice. We also reported that the progression of QR-32 cells by a gelatin sponge was significantly inhibited in the mice administered polysaccharide K (PSK) and that PSK induced an increase of radical scavengers, especially manganese superoxide dismutase (Mn-SOD), locally at the site of tumor tissues. In this study, to reveal the possible mechanism by which PSK induced Mn-SOD in the tumor tissues, we examined the mRNA expression and protein levels of inflammatory cytokines in the tissues. We found that mRNAs of tumor necrosis factor α (TNFα) and interleukin-1α (IL-1α) were considerably expressed in both PSK-treated and phosphate-buffered-saline-treated tumors, and that the mRNA expression and protein level of interferon γ (IFNγ) increased in the tumor tissues treated with PSK. In vitro treatment of QR-32 cells with IFNγ did not significantly increase the production of Mn-SOD; however, the combination of IFNγ with TNFα increased the Mn-SOD production more effectively than did any of the cytokines used singly. Furthermore, we observed the down-regulation of the mRNA expression and protein level of transforming growth factor β (TGFβ) in the tumor tissues treated with PSK, and that in vitro treatment of QR-32 cells with TGFβ decreased the production of Mn-SOD. These results suggest that PSK suppresses the progression of QR-32 cells by increasing Mn-SOD via the modulation of inflammatory cytokines; that is, by decreasing TGF-β and increasing IFN-γ. Received: 7 October 1997 / Accepted: 31 March 1998  相似文献   

18.
19.
In situ hybridisation and immunohistochemistry analyses have shown that the Ciona intestinalis tumour necrosis factor alpha gene (CiTNFα), which has been previously cloned and sequenced, is expressed either during the inflammatory pharynx response to lipopolysaccharide (LPS) or during the swimming larval phase of development. Granulocytes with large granules and compartment/morula cells are CiTNFα-producing cells in both inflamed pharynx and larvae. Pharynx vessel endothelium also takes part in the inflammatory response. Haemocyte nodules in the vessel lumen or associated with the endothelium suggest the involvement of CiTNFα in recruiting lymphocyte-like cells and promoting the differentiation of inflammatory haemocytes. Specific antibodies against a CiTNFα peptide have identified a 43-kDa cell-bound form of the protein. Observations of pharynx histological sections (at 4 and 8 h post-LPS inoculation) from naive and medium-inoculated ascidians have confirmed the CiTNFα-positive tissue response. Larval histological sections and whole-mount preparations have revealed that CiTNFα is expressed by trunk mesenchyme, preoral lobe and tunic cells, indicating CiTNFα-expressing cell immigration events and an ontogenetic role.  相似文献   

20.

Introduction  

TNFα is increased in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. TNFα activates mitogen-activated kinase kinase (MEK)/extracellular regulated kinase (ERK) in chondrocytes; however, the overall functional relevance of MEK/ERK to TNFα-regulated gene expression in chondrocytes is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号