首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.  相似文献   

2.
Summary It is shown that mei-S332, a semidominant mutant in Drosophila melanogaster, has the following properties: 1) It maps at about position 95 on the right arm of chromosome 2. 2) Its primary result is the precocious division of sister centromeres, which leads to nondisjunction, mostly equational, and loss for all chromosomes in both sexes. 3) Chromosome pairs behave approximately independently. 4) Gamete types for each chromosome appeared in the approximate ratios of 0.20 nullo-gametes: 0.12 diplo-gametes: 0.68 regular gametes for experiments reported here. 5) Exchange is correlated with a lower probability of reductional nondisjunction, but is independent of the probability of equational nondisjunction. 6) Since the phenotype of mei-S332 is similar in the two sexes, at least part of the meiotic events and their control for the second division and perhaps also the first division is the same in the two sexes. 7) Mosaics, resulting from mitotic chromosome loss appear among progeny of mei-S332 parents.Adapted from a dissertation presented in partial fulfillment of the degree of Doctor of Philosophy. The research was supported by a PHS Training Grant and PHS Grant RG-9965.  相似文献   

3.
James M. Mason 《Genetics》1976,84(3):545-572
The effects of a semidominant autosomal meiotic mutant, orientation disruptor (symbol: ord), located at 2–103.5 on the genetic map and in region 59B-D of the salivary map, have been examined genetically and cytologically. The results are as follows. (1) Crossing over in homozygous females is reduced to about seven percent of controls on all chromosomes, with the reduction greatest in distal regions. (2) Crossing over on different chromosomes is independent. (3) Reductional nondisjunction of any given chromosome is increased to about thirty percent of gametes from homozygous females. The probability of such nondisjunction is the same among exchange and nonexchange tetrads with the exception that a very proximal exchange tends to regularize segregation. (4) Equational nondisjunction of each chromosome is increased to about ten percent of gametes in homozygous females; this nondisjunction is independent of exchange. (5) The distributive pairing system is operative in homozygous females. (6) In homozygous males, reductional nondisjunction of each chromosome is increased to about ten percent, and equational nondisjunction to about twenty percent, of all gametes. (7) Cytologically, two distinct meiotic divisions occur in spermatocytes of homozygous males. The first division looks normal although occasional univalents are present at prophase I and a few lagging chromosomes are seen at anaphase I. However, sister chromatids of most chromosomes have precociously separated by metaphase II. Possible functions of the ord+ gene are considered.  相似文献   

4.
S E Bickel  D P Moore  C Lai  T L Orr-Weaver 《Genetics》1998,150(4):1467-1476
The Drosophila mei-S332 and ord gene products are essential for proper sister-chromatid cohesion during meiosis in both males and females. We have constructed flies that contain null mutations for both genes. Double-mutant flies are viable and fertile. Therefore, the lack of an essential role for either gene in mitotic cohesion cannot be explained by compensatory activity of the two proteins during mitotic divisions. Analysis of sex chromosome segregation in the double mutant indicates that ord is epistatic to mei-S332. We demonstrate that ord is not required for MEI-S332 protein to localize to meiotic centromeres. Although overexpression of either protein in a wild-type background does not interfere with normal meiotic chromosome segregation, extra ORD+ protein in mei-S332 mutant males enhances nondisjunction at meiosis II. Our results suggest that a balance between the activity of mei-S332 and ord is required for proper regulation of meiotic cohesion and demonstrate that additional proteins must be functioning to ensure mitotic sister-chromatid cohesion.  相似文献   

5.
A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform decrease in recombination, being most pronounced in distal regions, and an increase in first division nondisjunction of all chromosome pairs. Their behavior is consistent with the hypothesis that these mutants are defective in a process which is a precondition for exchange. Two female mutants were allelic and caused a uniform reduction in recombination for all intervals (though to different extents for the two alleles) and an increase in first-division nondisjunction of all chromosomes. Limited recombination data suggest that these mutants do not alter coincidence, and thus, following the arguments of Sandler et al. (1968), are defective in exchange rather than a precondiiton for exchange. A single female mutant behaves in a manner that is consistent with it being a defect in a gene whose functioning is essential for distributive pairing. Three of the female meiotic mutants cause abnormal chromosome behavior at a number of times in meiosis. Thus, nondisjunction at both meiotic divisions is increased, recombinant chromosomes nondisjoin, and there is a polarized alteration in recombination.-The striking differences between the types of control of meiosis in the two sexes is discussed and attention is drawn to the possible similarities between (1) the disjunction functions of exchange and the process specified by the chromosome-specific male mutants; and (2) the prevention of functional aneuploid gamete formation by distributive disjunction and meiotic drive.  相似文献   

6.
Richard C. Gethmann 《Genetics》1974,78(4):1127-1142
Two second chromosome, EMS-induced, meiotic mutants which cause an increase in second chromosome nondisjunction are described. The first mutant is recessive and causes an increase in second chromosome nondisjunction in both males and females. It causes no increase in nondisjunction of the sex chromosomes in either sex, nor of the third chromosome in females. No haplo-4-progeny were recovered from either sex. Thus, it appears that this mutant, which is localized to the second chromosome, affects only second chromosome disjunction and acts in both sexes.-The other mutant affects chromosome disjunction in males and has no effect in females. Nondisjunction occurs at the first meiotic division. Sex chromosome disjunction in the presence of this mutant is similar to that of sc(4)sc(8), with an excess of X and nullo-XY sperm relative to Y and XY sperm. In some lines, there is an excess of nullo-2 sperm relative to diplo-2 sperm, which appears to be regulated, in part, by the Y chromosome. A normal Y chromosome causes an increase in nullo-2 sperm, where B(s)Y does not. There is also a high correlation between second and sex chromosome nondisjunction. Nearly half of the second chromosome exceptions are also nondisjunctional for the sex chromosomes. Among the double exceptions, there is an excess of XY nullo-2 and nullo-XY diplo-2 gametes. Meiotic drive, chromosome loss and nonhomologous pairing are considered as possible explanations for the double exceptions.  相似文献   

7.
Baker BS  Carpenter AT  Ripoll P 《Genetics》1978,90(3):531-578
To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts are in a nondividing (G2) state.—Mitotic recombination is at or above control levels in the presence of each of the recombination-defective meiotic mutants examined, suggesting that meiotic and mitotic recombination are under separate genetic control in Drosophila.—Of the six mutants examined that are defective in processes required for regular meiotic chromosome segregation, four (l(1)TW-6cs, cand, mei-S332, ord) affect mitotic chromosome behavior. At semi-restrictive temperatures, the cold sensitive lethal l(1)TW-6cs causes very frequent somatic spots, a substantial proportion of which are attributable to nondisjunction or loss. Thus, this locus specifies a function essential for chromosome segregation at mitosis as well as at the first meiotic division in females. The patterns of mitotic effects caused by cand, mei-S332, and ord suggest that they may be leaky alleles at essential loci that specify functions common to meiosis and mitosis. Mutants at the two remaining loci (nod, pal) do not affect mitotic chromosome stability.  相似文献   

8.
B F Chadov 《Genetika》1991,27(11):1877-1903
The concepts of the mechanism of chromosome nondisjunction in Drosophila are described in a historical retrospective. Evidences are given for the appropriateness of the term co-orientation in the traditional sense used by geneticists treating nondisjunction. There are 6 variants of co-operation in Drosophila meiosis depending upon the number and particular chromosomes involved in co-orientation. The classical chromosome nondisjunction is a variant of co-orientation in the bivalent composed of two homologous chromosomes. By comparing the different variants of pairing (pairing in bi- and multivalents) resulting in co-orientation, the elementary events preceding co-orientation may be identified. The author reviews his recent data concerning the similarities of the co-orientation of two homologs and the co-orientation of two nonhomologs in Drosophila meiosis. The concept of the role of pairing in the precentromeric heterochromatic region during chromosome co-orientation is considered, and the hypothesis of delayed pairing in this region during meiotic prophase is put forward. Based on the suggested hypothesis clarified are (i) the relationship of pairing, crossing over, and disjunction of homologous chromosomes (ii) the relationship of crossing over and co-orientation of nonhomologous chromosomes, and (iii) the time when the contact resulting in nonhomolog co-orientation takes place.  相似文献   

9.
Joseph O''Tousa 《Genetics》1982,102(3):503-524
The effects of a female-specific meiotic mutation, altered disjunction (ald: 361), are described. Although ald females show normal levels of meiotic exchange, sex- and 4th-chromosome nondisjunction occurs at an elevated level. A large proportion of the nondisjunction events is the result of nonhomologous disjunction of the sex and 4th chromosomes. These nonhomologous disjunction events, and probably all nondisjunction events occurring in ald females, are the result of two anomalies in chromosome behavior: (1) X chromosomes derived from exchange tetrads undergo nonhomologous disjunction and (2) the 4th chromosomes nonhomologously disjoin from larger chromosomes. There is at best a marginal effect of ald on the meiotic behavior of chromosomes 2 or 3. The results suggest that the ald+ gene product acts to prevent the participation of exchange X chromosomes and all 4th chromosomes in nonhomologous disjunction events. The possible role of ald+ in current models of the disjunction process is considered.  相似文献   

10.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

11.
A. E. Zitron  R. S. Hawley 《Genetics》1989,122(4):801-821
We describe the isolation and characterization of Aberrant X segregation (Axs), a dominant female-specific meiotic mutation. Although Axs has little or no effect on the frequency or distribution of exchange, or on the disjunction of exchange bivalents, nonexchange X chromosomes undergo nondisjunction at high frequencies in Axs/+ and Axs/Axs females. This increased X chromosome nondisjunction is shown to be a consequence of an Axs-induced defect in distributive segregation. In Axs-bearing females, fourth chromosome nondisjunction is observed only in the presence of nonexchange X chromosomes and is argued to be the result of improper X and fourth chromosome associations within the distributive system. In XX females bearing a compound fourth chromosome, the frequency of nonhomologous disjunction of the X chromosomes from the compound fourth chromosome is shown to account for at least 80% of the total X nondisjunction observed. In addition, Axs diminishes or ablates the capacity of nonexchange X chromosomes to form trivalents in females bearing either a Y chromosome or a small free duplication for the X. Axs also impairs compound X from Y segregation. The effect of Axs on these segregations parallels the defects observed for homologous nonexchange X chromosome disjunction in Axs females. In addition to its dramatic effects on the X chromosome, Axs exerts a similar effect on the segregation of a major autosome. We conclude that Axs defines a locus required for proper homolog disjunction within the distributive system.  相似文献   

12.
Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction.  相似文献   

13.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

14.
CP1 (encoded by the CEP1 gene) is a centromere binding protein of Saccharomyces cerevisiae that binds to the conserved DNA element I (CDEI) of yeast centromeres. To investigate the function of CP1 in yeast meiosis, we analyzed the meiotic segregation of CEN plasmids, nonessential chromosome fragments (CFs) and chromosomes in cep1 null mutants. Plasmids and CFs missegregated in 10-20% of meioses with the most frequent type of aberrant event being precocious sister segregation at the first meiotic division; paired and unpaired CFs behaved similarly. An unpaired chromosome I homolog (2N + 1) also missegregated at high frequency in the cep1 mutant (7.6%); however, missegregation of other chromosomes was not detected by tetrad analysis. Spore viability of cep1 tetrads was significantly reduced, and the pattern of spore death was nonrandom. The inviability could not be explained solely by chromosome missegregation and is probably a pleiotropic effect of cep1. Mitotic chromosome loss in cep1 strains was also analyzed. Both simple loss (1:0 segregation) and nondisjunction (2:0 segregation) were increased, but the majority of loss events resulted from nondisjunction. We interpret the results to suggest that CP1 generally promotes chromatid-kinetochore adhesion.  相似文献   

15.
D. D. Sears  J. H. Hegemann  J. H. Shero    P. Hieter 《Genetics》1995,139(3):1159-1173
We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role (s) of conserved centromere DNA elements (CDEI, CDEII and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEIIδ31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/--) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I.  相似文献   

16.
Two disjunction defective meiotic mutants, ord and mei-S332, each of which disrupts meiosis in both male and female Drosophila melanogaster, were analyzed cytologically and genetically in the male germ-line. It was observed that sister-chromatids are frequently associated abnormally during prophase I and metaphase I in ord. Sister chromatid associations in mei-S332 are generally normal during prophase I and metaphase I. By telophase I, sister chromatids have frequently precociously separated in both mutants. During the first division sister chromatids disjoin from one another frequently in ord and rarely in mei-S332. It is argued that the simplest interpretation of the observations is that each mutant is defective in sister chromatid cohesiveness and that the defect in ord manifests itself earlier than does the defect in mei-S332. In addition, based on these mutant effects, several conclusions regarding normal meiotic processes are drawn. (1) The phenotype of these mutants support the proposition that the second meiotic metaphase (mitotic-type) position of chromosomes and their equational orientation is a consequence of the equilibrium, at the metaphase plate, of pulling forces acting at the kinetochores and directed towards the poles. (2) Chromosomes which lag during the second meiotic division tend to be lost. (3) Sister chromatid cohesiveness, or some function necessary for sister chromatid cohesiveness, is required for the normal reductional orientation of sister kinetochores during the first meiotic division. (4) The kinetochores of a half-bivalent are double at the time of chromosome orientation during the first meiotic division. Finally, functions which are required throughout meiosis in both sexes must be considered in the pathways of meiotic control.  相似文献   

17.
Two meiotic genes from natural populations are described. A female meiotic mutation,mei(1)g13, mapped to 17.4 on the X chromosome, causes nondisjunction of all homologs except for the fourth chromosomes. In addition, it reduces recombination by 10% in the homozygotes and causes 18% increased recombination in the heterozygotes. A male meiotic mutation,mei-1223 m144 , is located on the third chromosome. Although this mutation causes nondisjunction of all chromosomes, each chromosome pair exhibits a different nondisjunction frequency. Large variations in the sizes of the premature sperm heads observed in the homozygotes may reflect irregular meiotic pairing and the subsequent abnormal segregation, resulting in aneuploid chromosome complements.  相似文献   

18.
In females of Drosophila melanogaster, compound autosomes enter the repulsion phase of meiosis uncommitted to a particular segregation pattern because their centromeres are not restricted to a bivalent pairing complex as a consequence of crossing over. Their distribution at anaphase, therefore, is determined by some meiotic property other than exchange pairing, a property that for many years has been associated with the concept of nonhomologous pairing. In the absence of heterologous rearrangements or a free Y chromosome, C(3L) and C(3R) are usually recovered in separate gametes, that is as products of meiotic segregation. Nevertheless, there is a regular, albeit infrequent, recovery of reciprocal meiotic products (the nonsegregational products) that are disomic and nullosomic for compound thirds. The frequency of these exceptions, which is normally between 0.5 and 5.0%, differs for the various strains examined, but remains constant for any given strain. Since previous studies have not uncovered a cause for this base level of nonsegregation, it has been referred to as the spontaneous frequency. In this study, crosses between males and females whose X chromosomes, as well as compound autosomes, are differentially marked reveal a highly significant positive correlation between the frequency of compound-autosome nonsegregation and the frequency of X-chromosome nondisjunction. However, an inverse correlation is found when the frequency of nondisjunction is related to the frequency of crossing over in the proximal region of the X chromosome. These findings have been examined with reference to the distributive pairing and the chromocentral models and interpreted as demonstrating (1) that nonsegregational meiotic events arise primarily as a result of nonhomologous interactions, (2) that forces responsible for the segregation of nonhomologous chromosomes are properties of the chromocentral region, and (3) that these forces come into expression after the exchange processes are complete.  相似文献   

19.
It is shown that under the influence of an autosomal meiotic mutant that causes abnormalities in meiotic centromere function (mei-S332), ring-X chromosomes are frequently nonrecoverable. Evidence is presented that this nonrecoverability is caused by a failure of sister ring-chromatids to successfully effect an equational separation with resultant dominant lethality. Because mei-S332 results in meiotic abnormalities only after replication has been completed, and because ring chromosomes are normally transmitted with approximately the same efficiency as rod chromosomes, it is suggested that during replication in normal meioses, sister ring-chromatids form mutually interlocked ring complexes that are resolved without genetic consequences at anaphase II, with the resolution owing at least in part to normal centromere function.  相似文献   

20.
Within the last decade, aberrant meiotic recombination has been confirmed as a molecular risk factor for chromosome nondisjunction in humans. Recombination tethers homologous chromosomes, linking and guiding them through proper segregation at meiosis I. In model organisms, mutations that disturb the recombination pathway increase the frequency of chromosome malsegregation and alterations in both the amount and placement of meiotic recombination are associated with nondisjunction. This association has been established for humans as well. Significant alterations in recombination have been found for all meiosis I-derived trisomies studied to date and a subset of so called "meiosis II" trisomy. Often exchange levels are reduced in a subset of cases where the nondisjoining chromosome fails to undergo recombination. For other trisomies, the placement of meiotic recombination has been altered. It appears that recombination too near the centromere or too far from the centromere imparts an increased risk for nondisjunction. Recent evidence from trisomy 21 also suggests an association may exist between recombination and maternal age, the most widely identified risk factor for aneuploidy. Among cases of maternal meiosis I-derived trisomy 21, increasing maternal age is associated with a decreasing frequency of recombination in the susceptible pericentromeric and telomeric regions. It is likely that multiple risk factors lead to nondisjunction, some age dependent and others age independent, some that act globally and others that are chromosome specific. Future studies are expected to shed new light on the timing and placement of recombination, providing additional clues to the link between altered recombination and chromosome nondisjunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号