首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of ANS to apolactate dehydrogenase (apo-LDH) is accompanied by a 300-fold increase in dye fluorescence with a shift of the emission maximum from 515 to 479 nm, as well as by quenching of intrinsic protein fluorescence. A tetrameric LDH molecule has 6.4 +/- 1.6 non-interacting dye-binding sites with an association constant equal to (4.3 +/- 1.6) X 10(3) M-1. NAD+ added at saturating concentrations does not alter the number of ANS binding sites or the association constant value. The formation of binary LDH.NAD+, LDH.NADH, LDH.AMP and LDH.pyruvate complexes causes the quenching of fluorescence of the enzyme-bound ANS. The extent of quenching observed at ligand saturating concentrations differs for each ligand. Pyruvate added to the binary LDH.AMP complex exerts no effect on the fluorescence of protein-bound ANS; this indicates that the binding of AMP causes some alterations in the microenvironment of the substrate-binding site. Nicotinamide mononucleotide (NMN) can act as a coenzyme in the LDH-catalyzed reaction. AMP added together with NMN displays an inhibitory effect. The cationic (auramine O) and anionic (ANS) fluorescent probes bound to LDH exhibit different responses to conformational changes accompanying the transition from the apoenzyme to the LDH X NAD-pyruvate complex.  相似文献   

2.
The binding of lactate dehydrogenase (LDH) to sarcoplasmic reticulum membranes results in a 60-70% decrease of the enzyme specific activity. This binding occurs both in high (Kd = 1 microM) and low affinity sites. Addition of NADH or NAD+ and a increase of ionic strength lead to the solubilization of the bound enzyme. A similar effect is observed after addition of the fluorescent probes--anilinonaphthalene sulfonate (ANS) and auramine O (A0). The effect of ANS consists predominantly in its binding to the membrane, while that of A0 is due to the probe interaction with the enzyme. At low concentrations of toluidinylnaphthalene sulfonate (TNS) under conditions of predominant binding of the probe to the membrane, the LDH binding to microsomes is enhanced. A rise in the TNS concentration leads to the formation of the probe-LDH complex which interaction with membrane is hampered. The sites of the probes binding to the protein are located outside the enzyme active center but are, nevertheless, sensitive to it states. It is assumed that these sites of the LDH molecule are involved in its interaction with the membrane. The decline of activity of the bound enzyme is interpreted in terms of alterations of the physico-chemical properties of the medium during the enzyme transition from the solution to the perimembrane space.  相似文献   

3.
The N-methylacridinium cation is bound to hydrophobic sites of horse liver alcohol dehydrogenase and human serum albumin with an observed stoichiometry of one molecule N-methyl-acridinium chloride per subunit of alcohol dehydrogenase and 2.5 molecules of the dye per molecule human serum albumin; the dissociation constants are 3.6 X 10(-5) M and 1.7 X 10(-5) M, respectively. In light, the proteins catalyze the dismutation of N-methylacridinium chloride to N-methylacridone and N-methyl-9,10-dihydroacridine. The presence or absence of oxygen has no effect upon the observed reaction rate. If horse liver alcohol dehydrogenase is used as catalyst, the reaction is inhibited by adenosine diphosphoribose and by 1,1'-dimethyl-4,4'-bipyridylium dichloride. It is concluded that the N-methylacridinium cation is bound within the catalytic site of the enzyme interacting with the binding sites of the nicotinium ring and/or the binding site of the lipophilic part of the substrate. The anaerobic photodismutation of N-methylacridinium chloride to N-methyl-9,10-dihydroacridine and N-methylacridone can be explained by several alternative patways (see Appendix by S. Hünig), the overall reaction being 2[N-Methylacridinium]+ + H2Ohw leads to N-Methyl-9,10-dihydroacridine + N-methylacridone + 2H+. The prerequisite, a high rate of proton transfer from the reaction site, seems to be common property of the hydrophobic binding regions for the N-methylacridinium cation in both horse liver alcohol dehydrogenase and human serum albumin.  相似文献   

4.
J W Burgner  W J Ray 《Biochemistry》1984,23(16):3620-3626
The binary complex of NAD and lactate dehydrogenase reacts reversibly with cyanide to produce a complex (E X NAD-CN) whose noncovalent interactions are similar to those in the E X NADH complex (where E is one-fourth of the tetrameric dehydrogenase). The reaction apparently is a simple bimolecular nucleophilic addition at the 4 position of the bound nicotinamide ring; viz., cyanide does not bind to the enzyme prior to reaction. The value of the dissociation constant for E X NAD-CN is about 1 X 10(-6) M and is independent of pH over the range of 6-8. The equilibrium constant for the reaction of cyanide with E X NAD is about 400-fold larger than that for the nonenzymic process after a statistical correction. This increment in Ke is accounted for by a 220-fold increase in the rate of the forward enzymic reaction (20 M-1 s-1) as compared with an approximately 2-fold decrease for the reverse process (9 X 10(-5) s-1). Thus, the increased value of the rate constant for bond formation in the enzymic reaction is attributed to an equilibrium binding effect that is translated almost entirely into a rate effect on that step (bond formation). Since the nonenzymic reaction is sensitive to solvent composition, this equilibrium binding effect likely is produced by environmental effects at the nicotinamide/dehydronicotinamide part of the coenzyme binding site on the enzyme.  相似文献   

5.
Kinetic analysis showed that the alkaloid caffeine is a competitive inhibitor of the enzyme lactate dehydrogenase with respect to substrate pyruvate, and a non-competitive inhibitor with respect to the coenzyme NADH. The inhibitor constant Ki is 0,54 mM. Scatchard analysis determined the dissociation constant for a single independent binding site of the ternary lactate dehydrogenase - NADH - caffeine complex (KE-NADH-CAFFEINE) and the number of binding sites to be 0,14 mM and 3,83 respectively. Caffeine binds to a hydrophobic domain in the substrate binding site. Alternate nucleophilic - electrophilic functionalities within the inhibitor molecule are proposed to be the fundamental reason for the inhibition.  相似文献   

6.
Detailed stopped-flow kinetic studies of the association of 2,2-bipyridine, 1,10-phenanthroline, and 5-chloro-1,10-phenanthroline to the zinc ion at the active site of alcohol dehydrogenase have demonstrated that a process with a limiting rate constant of about 200 s?1 restricts the binding of the bidentate chelating agents to the free enzyme. The formation of the enzyme-ligand complexes has been followed by means of the characteristic absorption spectra of the resulting complexes or by the displacement of the fluorescent dye, auramine O. Monodentate ligands, upon binding to the free enzyme or enzyme-NAD+ and enzyme-NADH complexes, do not exhibit a comparable limiting rate. In analogy with simple inorganic systems, these observations have been interpreted in terms of the rate limiting dissociation of an inner sphere water molecule following the rapid formation by the bidentate ligand of an outer sphere complex. The displacement of a water molecule from the zinc ion by 1,10-phenanthroline has been observed in crystallographic studies which have also established that the zinc ion in the enzyme-1,10-phenanthroline complex is pentacoordinate. Monodentate ligands, which are substrate analogs, do not exhibit limiting rates because displacement of water is not required for their addition to a coordinate position which is apparently vacant in the free enzyme. If a water molecule remains bound to the zinc ion in the kinetically competent ternary complex, it could play an essential role in the proton transfer reaction accompanying catalysis.  相似文献   

7.
The fluorescence of the cation auramine O was substantially enhanced by the presence of actin monomer. Titrations of this fluorescence enhancement indicated that actin monomer had two auramine O binding sites, each with a dissociation constant of approx. 20 microM. Calcium ions had no effect on the number of actin monomer-bound auramine O molecules or on the dissociation constant for that interaction. However, calcium ions increased the maximum change of fluorescence that occurs when actin monomer was fully saturated with auramine O. This effect of calcium was saturable and yielded a Ca2+ dissociation constant of 1.6 mM. It was concluded that auramine O bound to sites on actin monomer and independently monitored the binding of Ca2+ ion(s) to other site(s) on actin monomer. Further, the magnitude of the Ca2+ dissociation constant suggested that this Ca2+-binding site may be representative of the multiple bivalent cation-binding sites on actin monomer which are thought to be directly involved in actin polymerization. However, the exact relationship between these sites remains unclear.  相似文献   

8.
The fructose 1,6-bisphosphate [Fru(1,6)P2]-dependent lactate dehydrogenase in cells of Streptococcus uberis N.C.D.O. 2039 was purified by a procedure that included chromatography on DEAE-cellulose and Blue Sepharose CL-6B in phosphate buffers. The enzyme appeared to interact with Blue Sepharose through NADH-binding sites. The homogeneous enzyme had catalytic properties that were generally similar to those of other Fru(1,6)P2-dependent lactate dehydrogenases, and it had no catalytic activity in the absence of Fru(1,6)P2. Its existence in different forms, depending on conditions, was investigated by ultracentrifugation, analytical gel filtration and activity measurements. It consisted of subunits with Mr 35,900 +/- 500 and, in the presence of adequate concentrations of Fru(1,6)P2, phosphate or NADH, it existed as a tetramer, whereas when these ligands were in lower concentrations or absent, the subunits were in a concentration-dependent association-dissociation equilibrium. Dissociation occurred slowly and inactivated the enzyme, and although added ligands reversed the dissociation, the lost activity was at best only partly restored. An exception occurred when dissociation was caused by a decrease in temperature, in which case the lost activity was fully restored at the original temperature. The tetramer also lost activity at certain ligand concentrations without dissociating. The results together indicated the presence on the enzyme of two classes of binding site for both Fru(1,6)P2 and NADH, and the likelihood that phosphate bound at the same sites as Fru(1,6)P2. Two different ligands together were much more effective at preventing inactivation and dissociation than was expected from their effectiveness when present separately. It was concluded that tetrameric forms of the enzyme rather than the enzyme in association-dissociation equilibrium were involved in the regulation of its activity in vivo.  相似文献   

9.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Experimental conditions favouring the dissociation of tetrameric rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase into active monomers were elaborated. The urea-induced dissociation of the tetramer was shown to be a stepwise process (in 2 M urea only dimers are formed; an increase in urea concentration up to 3 M causes the splitting of the dimers into monomers). The specific activity of immobilized monomers in the glyceraldehyde-3-phosphate oxidation reaction does not differ from that of the parent immobilized tetrameric form. The tetrameric enzyme molecule binds the coenzyme with a negative cooperativity (the first two NAD+ molecules bind with KD below 0.1 microM; for the third and fourth molecules the dissociation constant was determined to be equal to 5.5 +/- 1.5 microM (50 mM medinal buffer, 10 mM sodium phosphate, pH 8.2). The cooperativity of NAD+ binding is preserved in the immobilized preparation of tetrameric dehydrogenase. The immobilized monomers bind NAD+ with KD of 1.6 +/- 1.0 microM. The experimental results are consistent with the hypothesis according to which the association of catalytically active subunits into a tetramer changes their coenzyme-binding properties in such a way that the first two NAD+ molecules bind more firmly to a tetramer than to a monomer, whereas the third and the fourth NAD+ molecules bind less firmly.  相似文献   

11.
Aldehyde binding to liver alcohol dehydrogenase in the absence and presence of coenzymes has been characterized by spectrometric equilibrium methods, using auramine O and bipyridine as reporter ligands. Free enzyme shows a significant affinity for aldehydes, and equilibrium constants for dissociation of the binary complexes formed with typical aldehyde substrates are reported. Binary-complex formation does not lead to any detectable inner-sphere coordination of aldehydes to the catalytic zinc ion of the enzyme subunit. Complex formation with NAD+ or NADH increases the affinity of the enzyme for aromatic aldehydes by a factor of 1.8 - 3.5 and 6-17, respectively. Benzaldehyde and dimethylaminocinnamaldehyde binding to the enzyme . NAD+ complex is not detectably associated with inner-sphere coordination of the aldehyde to zinc. It is concluded that binding of NADH is required to induce catalytically adequate bonding interactions between enzyme and aromatic aldehydes. The effect of reduced coenzyme in this respect is attributed to hydrophobic interactions leading to dehydration of the active-site region, which allows aldehyde substrates to compete successfully with water for inner-sphere coordination to the catalytic zinc ion. Oxidized coenzyme is proposed to have a similar promoting effect on metal coordination of aldehydes which function as substrates for the dismutase activity of the enzyme.  相似文献   

12.
Binding of histidinal to histidinol dehydrogenase   总被引:3,自引:0,他引:3  
One molecule of the enzymatic intermediate histidinal is firmly bound per subunit of histidinol dehydrogenase (EC 1.1.1.23) and protected against decomposition. The dissociation rate constant of the histidinal--histidinol dehydrogenase complex is estimated as 2.5 X 10(-5) S-1. Steady-state kinetic measurements studying the oxidation of histidinal to histidine and the reduction of histidinal to histidinol allow to calculate the association rate constants for histidinal. For both reactions the association rate constant is found as 1.9 X 10(6) M-1 S-1. Thus the dissociation constant of the histidinal--histidinol dehydrogenase complex is estimated to be of the order of 1.4 X 10(-11) M.  相似文献   

13.
Michler's ketone, the ketone analog of auramine O, binds to liver alcohol dehydrogenase with an affinity comparable to that of auramine O, yields similar induced circular dichroism bands, and its binding is enhanced in the same way by binding of coenzyme fragments. These observations suggest that (a) Michler's ketone binds to liver alcohol dehydrogenase in a similar manner and at the same site as does auramine O and (b) the enhancement of auramine O and Michler's ketone binding by coenzyme fragments is not due to electrostatic interactions since both the positively charged auramine O and the neutral Michler's ketone show similar effects. Observation of similar enhancement of auramine O binding by GMP and ?-AMP as well as the activesite topology suggested by fluorescence and X-ray studies argue against any direct interaction of the dye with the purine ring. We, therefore, ascribe the enhanced binding of dye in ternary complexes to a conformational change in liver alcohol dehydogenase induced by the binding of coenzyme fragments. Studies of the circular dichroism of liver alcohol dehydrogenase complexes with 2,2′-bipyridyl are also reported.  相似文献   

14.
35Cl nmr relaxation rate measurements have been used to study anion-binding sites in pig heart lactate dehydrogenase. These studies reveal two types of sites, one is intimately associated with the active site, the other is not. The nonactive site has been ascribed to a subunit site in analogy with crystallographic results from the dogfish M4 enzyme. The binding of either the reduced or the oxidized form of NAD results in an increase in the 35Cl nmr relaxation rate by a factor of 1.8–2. The enhanced nmr relaxation rate of the binary lactate dehydrogenase-NAD complex is reduced on binding of the substrate inhibitor molecules oxamate or oxalate to a value less than that exhibited by lactate dehydrogenase alone. The enhancement of the nmr relaxation rate is attributed to a decrease in the dissociation constant of Cl for the enzyme. The Kp values for Cl binding to the active center site of lactate dehydrogenase is 0.85 m and for lactate dehydrogenase-NADH is 0.25 m. The ratio of these constants, 3.4, agrees well with the measured enhancement value 3.7. The effect of coenzyme analogs on the 35Cl nmr relaxation rate has been examined. 3-Acetylpyridine NAD produces an enhancement of 4.3, thionicotinamide NAD of 2.3, whereas 3-pyridinealdehyde, adenosinediphosphoribose, and adenosine diphosphate do not affect the nmr relaxation state of Cl bound to lactate dehydrogenase.  相似文献   

15.
The zinc-deficient enzyme binds the fluorescence probes for the enzyme substrate pocket (auramine O, 13-ethylberberine, chlorprothixene and acridine orange) more tightly than the native enzyme, whereas 1-anilinonaphthalene 8-sulphonic acid is bound with comparable affinity. The use of fluorescence probes as reporter ligands revealed that the formation of binary complexes between the zinc-deficient enzyme and aldehydes is possible (as with the native enzyme) and confirmed an increased affinity of coenzymes to the modified enzyme. The absence of catalytic zinc ions brings about a loss of the essential stabilization effect in simultaneous NADH and aldehyde binding to liver alcohol dehydrogenase. 2,2'-Bipyridine, which chelates the active-site zinc ion in the native enzyme, is bound rather loosely to the same site as aldehydes, auramine O and ethylberberine in the case of the zinc-depleted enzyme. The stopped-flow measurements showed that the pH dependence of auramine O and ethylberberine binding to native and zinc-depleted enzyme is essentially similar. These data are compatible with the presence of ionizable groups in the surroundings of the bound probes. This group might be either His-67, bound to the zinc ion, or the zinc-liganding water molecule in the case of the native enzyme (pK close to 9), or the free His-67 residue in the case of the zinc-deficient enzyme (pK about 8).  相似文献   

16.
Abstract

Experiments using equilibrium dialysis and fluorescence quenching provided direct evidence that approximately four moles of L-aspartic acid were bound per mole of tetrameric L-asparaginase from Escherichia coli, with a dissociation constant on the order of 60-160 μM. In addition, a set of weaker binding sites with a dissociation constant in the millimolar range were detected. Kinetic studies also revealed that L-aspartic acid inhibited L-asparaginase competitively, with an inhibition constant of 80 μM at micromolar concentrations of L-asparagine; at millimolar concentrations of the amide, an increase in maximal velocity but a decrease in affinity for L-asparagine were observed. L-Aspartic acid at millimolar levels again displayed competitive inhibition. These and other observations suggest that L-aspartic acid binds not only to the active site but also a second site with lower intrinsic affinity for it. The observed “substrate activation” is most likely attributable to the binding of a second molecule of L-asparagine rather than negative cooperativity among the tight sites of the subunits of this tetrameric enzyme. Further support for L-aspartic acid binding to the active site comes from experiments in which the enzyme, when exposed to various group-specific reagents suffered parallel loss of catalytic activity and in its ability to bind L-aspartic acid. Different commercial preparations of Escherichia coli L-asparaginase were found to contain ~ 2-4 moles of L-aspartic acid; these were incompletely removed by dialysis, but could be removed by transamination or decarboxylation. Efficiency of dialysis increased with increasing pH. Taken together, this set of results is consistent with the existence of a covalent β-aspartyl enzyme intermediate.  相似文献   

17.
A simple methoxylated derivative of the triazine dye, Procion blue H-B, selectively precipitates rabbit muscle lactate dehydrogenase from solution. Optimum protein precipitation occurred at an enzyme subunit:dye ratio of approximately 2:1 and was fully reversible upon addition of competitive ligands such as NADH. With a crude extract of rabbit muscle, affinity precipitation with the dye followed by dissolution with NADH yielded homogeneous lactate dehydrogenase in 97% overall yield.  相似文献   

18.
Inactivation of apo-glyceraldehyde-3-phosphate dehydrogenase from rat skeletal muscle in the presence of butanedione is the result of modification of one arginyl residue per subunit of the tetrameric enzyme molecule. The loss of activity follows pseudo-first-order kinetics. NAD+ increases the apparent first-order rate constant of inactivation. The effect of NAD+ on the enzyme inactivation is cooperative (Hill coefficient = 2.3--3.2). Glyceraldehyde 3-phosphate protected the holoenzyme against inactivation, decreasing the rate constant of the reaction. At saturating concentrations of substrate the protection was complete. The Hill plot demonstrates that the effect is cooperative. This suggests that subunit interactions in the tetrameric holoenzyme molecule may affect the reactivity of the essential arginyl residues. In contrast, glyceraldehyde 3-phosphate had no effect on the rate of inactivation of the apoenzyme in the presence of butanedione. 100 mM inorganic phosphate protected both the apoenzyme and holoenzyme against inactivation. The involvement of the microenvironment of the arginyl residues in the functionally important conformational changes of the enzyme is discussed.  相似文献   

19.
The structure of the active center of glyceraldehyde-3-phosphate dehydrogenase and the arrangement of subunits in the tetrameric molecule is delineated. The mechanism of cooperative effects in the oligomer is considered, and the involvement of various regions of the active center and of different-subunit contact area in the realization of the cooperative phenomena is discussed. A special attention is paid to the effect of NAD+ bound to one of the subunits of the tetramer on the structure of an adjacent subunit and to the problem of the participation of the coenzyme in the creation of anion-binding sites of the enzyme. The conditions of reversible dissociation of the tetrameric apoenzyme molecule into dimers are depicted, and the role of NAD+ in the organization of the quaternary structure of the dehydrogenase is discussed. The problem of catalytic activity of the dimeric form of the enzyme is argued.  相似文献   

20.
The binding of substrates and a product to glutathione S-transferase A from rat liver was studied by use of equilibrium dialysis and equilibrium partition in a two-phase system. The radioactive substrates glutathione and bromosulfophthalein as well as a product of glutathione and 3,4-dichloro-1-nitrobenzene, S-(2-chloro-4-nitrophenyl)glutathione, gave hyperbolic binding isotherms with a stoichiometry of 2 mol per mol of enzyme (i.e. 1 molecule per subunit). Glutathione (and glutathione disulfide) had an equilibrium (dissociation) constant for the binding of about 10 microM, whereas bromosulfophthalein and the product had equilibrium constants of about 0.5 microM. All ligands showed the same binding stoichiometry, and competition experiments involving unlabeled ligands indicated that glutathione and the glutathione derivatives were binding to the same site. Low affinity sites appeared to exist in addition to the specific high affinity sites (one per subunit) for all ligands tested. The binding studies are fully consistent with a steady state random kinetic mechanism for the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号