共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology, anatomy and vasculature of Pinus leaves was studied. The results indicate that the Pinus leaf is always supplied with only one single vascular bundle, which is surrounded by a prominent bundle sheath. In several taxa, especially of subgenus Pinus, the vascular bundle may however be subdivided by longitudinal parenchymatic bands in the middle part of the leaf. As a result, the single bundle gets the appearance of two individual bundles, which are surrounded by a common bundle sheath. The general rule that a bundle sheath does sheath only one single bundle, as in other gymno- and angiospermous seed plants, applies therefore also for Pinus. The morphological and anatomical similarities between cladodes of Sciadopitys (Sciadopityaceae) and Pinus leaves are based on a completely different bauplan. The idea of “hidden cladodes” in some Pinaceae is therefore obsolete. 相似文献
2.
The purpose of this work is to study virtual populations of artificial organisms with their genotype, morphology, mechanism of motion, search and competition for food, reproduction, mutations. The genotype determines the phenotype (morphology), while morphology determines efficiency of motion and success in the search for food in the competition with other individuals; sufficient amount of food allows reproduction. Ensemble of these elements constitutes the minimal model to study natural selection of artificial organisms. Considering only some of them, as it is often the case in artificial life models, can be used for the optimization of some properties (for example, robot's gait or embryo's form) but not to study natural selection in the evolutionary context.Artificial organisms are considered in this work in the form of polygons (triangles) on the plane. Their genotype is given by three positive numbers associated to the vertices and their morphology is determined by the lengths of the sides equal the sum of the numbers in the adjacent vertices. Behavior of the individuals and their success in the search for food depend on their morphology. More efficient individuals will reproduce more than the others and will transmit their advantageous variations to their offsprings. Hence we can observe how natural selection chooses more efficient morphology and how it evolves due to random mutations.We develop an individual based model where the individuals recognize food and move to it with the speed determined by their morphology (and not prescribed in the algorithm). If they have enough food, they survive and reproduce. Therefore morphology and evolution are tightly interconnected and should be studied together. Dynamics of such populations appears to be different from the dynamics described by conventional models of competition and evolution of species. In particular, a new phenotype can emerge due to a different strategy of foraging (related to a different morphology) and not only due to a difference in consumed resources with the existing phenotype. We also observe that realization of Cope's rule (increase of body size in the process of evolution) can depend on parameters of the model. 相似文献
3.
4.
5.
Hisayoshi Nozaki 《Journal of plant research》1996,109(3):353-361
Morphological features of sexual reproduction in the Volvocaceae are reviewed, focusing particularly on gametic union and
zygote gemination. Both of the two conjugating gametes of the isogamous generaPandorina, Volvulina andYamagishiella bear a tubular mating structure (mating papilla), and plasmogamy is initiated by union of the papillae tips. On zygote germination,
a single biflagellate gone cell is released from the zygote wall. Although all the anisogamous and oogamous genera of the
Volvocaceae produce “sperm packets” during gametogenesis and a single gone cell at zygote germination, some difference can
be recognized in the male gametes. The male gametes ofEudorina bear a tubular cytoplasmic protuberance (putative mating papllla) near the base of the flagella, whereas such a structure
recognized at the light microscopic level is not evident inPleodorina andVolvox. Evolution of the sexual reproduction characteristics of volvocacean algae is discussed on the basis of recent cladistic
analysis of morphological data as well as of the ribosomal (r) RNA phylogeny and large subunit of the ribulose-1, 5-biphosphate
carboxylase/oxygenase(rbcL) gene trees.
Dedicated to Emeritus Prof. Hideo Kasaki (Tokyo Metropolitan University) on the occasion of his 77th birthday.
Recipient of the Botanical Society Award for Young Scientists, 1994. 相似文献
6.
The road to the Janiroidea: Comparative morphology and evolution of the asellote isopod crustaceans 总被引:1,自引:0,他引:1
G. D. F. WILSON 《Journal of Zoological Systematics and Evolutionary Research》1987,25(4):257-280
This paper presents a new phylogenetic estimate of isopod crustaceans of the suborder Asellota with the aim of clarifying the evolution of the superfamily Janiroidea, a large and diverse group inhabiting all aqueous habitats. The phylogenetic analysis is based on a morphological evaluation of characters used in past classifications, as well as several new characters. The evolutionary polarity of the characters was determined by outgroup analysis. The characters employed were from the pleopods, the copulatory organs, the first walking legs, and the cephalon. The resulting character data set was analyzed with numerical phylogenetic computer programs to find one most parsimonious clado-gram, which is translated into a classification using the sequencing convention. The new phylogenetic estimate is significantly more parsimonious than previous trees from the literature, and several of its monophyletic groups have robust confidence limits. The superfamily Stenetrioidea belongs to the clade including the Janiroidea, not with the Aselloidea as previously suggested. The sister group of the Janiroidea is the family Pseudojaniridae, which is elevated to superfamily rank. The clade including the families Gnathostenetroididae and Protojaniridae is not the sister group of the Janiroidea, and is derived earlier in janiroidean evolution than the Stenetrioidea. Within the Janiroidea, the family Janiridae is not the most primitive taxon as previously believed. The clade including the families Munnidae and Pleurocopidae contains the earliest derived janiroideans. The data also indicate that the unusual sexual morphology of the Janiroidea did not appear suddenly but developed as a series of independent steps within the Asellota. 相似文献
7.
Morphology and evolution 总被引:1,自引:0,他引:1
J W Osse 《Acta morphologica Neerlando-Scandinavica》1983,21(1):49-67
8.
James D. Mauseth 《Plant biosystems》2013,147(1):429-435
Abstract The ancestors of cacti were leafy trees that had hard, woody trunks. The development of the cactus body is controlled by ontogenetic mechanisms that have evolved, and now they produce a body that is leafless, succulent and has a photosynthetic cortex. Specific changes include: bark formation is postponed and the epidermis and stomata function for many years; the outer cortex is a palisade cortex with intercellular spaces; there are cortical bundles that resemble leaf veins but which have secondary xylem and phloem. Wood development has changed dramatically such that water storage is maximized (increased ray parenchyma) and danger of water stress is minimized (increased paratracheal parenchyma, loss of fibers). Several genera have polymorphic wood: the plants produce one type of wood for several years, then later they produce a different type. It is possible that the extensive evolutionary changes have resulted from mutations in the controller regions of genes, not in the structural regions. 相似文献
9.
Jack T. Stern 《American journal of physical anthropology》1972,36(3):315-339
Many anthropologists and anatomists have claimed that the human gluteus maximus is a functionally and structurally unique muscle, but there is not agreement on the actual characteristics of the muscle which do distinguish man from other primates. In this paper the superficial gluteus in a wide range of primates is discussed and those traits entirely unique to man are identified. The morphological specializations of the human gluteus maximus are confined to its cranial portion. This part is thicker in man than in any other primate; it has a new and firm origin, a modified ascending tendon of insertion, and an additional new insertion into the overlying fascia lata. Such changes improve the ability of the gluteus maximus to participate in controlling lateral stability of the trunk, and it suggested that this is the function which has been selected for in human evolution. 相似文献
10.
Summary Morphology plays an important role in the computational properties of neural systems, affecting both their functionality and the way in which this functionality is developed during life. In computer-based models of neural networks, artificial evolution is often used as a method to explore the space of suitable morphologies. In this paper we critically review the most common methods used to evolve neural morphologies and argue that a more effective, and possibly biologically plausible, method consists of genetically encoding rules of synaptic plasticity along with rules of neural morphogenesis. Some preliminary experiments with autonomous robots are described in order to show the feasibility and advantages of the approach. 相似文献
11.
The elytral base sclerites (= sclerites located at the articular region between the forewing and thorax in Coleoptera) of selected taxa were examined and homologized. Although the elytral base sclerites are highly modified compared to the wing base sclerites of the other neopterans, they can be homologized by using the conservative wing flapping and folding lines as landmarks. A reduction of the first axillary sclerite was identified as a general trend of the elytral base sclerites, although the sclerite usually has a very important function to mediate flight power from the notum to the wing. This result indicates that the functional constraint against the basal sclerites is relaxed because of the lack of an ability to produce flight power by elytra. In contrast, the elytral folding system formed by the basal sclerites is well retained, which probably occurs because proper wing folding is a key for the shelter function of the elytra. The elytral base sclerites apparently contain more homoplasies than the serially homologous hindwing base sclerites of Coleoptera, which suggests that the structure is less useful for higher-level systematics. However, the faster evolutionary rate of the elytral base sclerites suggests there is potential for studying the lower-level phylogeny of Coleoptera. 相似文献
12.
13.
Yong Yang David Kay Ferguson Bing Liu Kang-Shan Mao Lian-Ming Gao Shou-Zhou Zhang Tao Wan Keith Rushforth Zhi-Xiang Zhang 《Plant Diversity》2022,44(4):340
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina. 相似文献
14.
从患流行病的鳜鱼脾脏组织超微切片中观察到大量的病毒颗粒。该完整病毒颗粒直径约 135nm± 10 ,具包膜。成熟病毒核壳体约 90nm± 5 ,包膜厚度约 18nm± 3,核壳体与包膜间的非电子致密区约有 2 7nm± 2。通过对不同发病阶段发病鳜鱼脾脏组织切片的电镜观察 ,在感染初期的鳜鱼脾脏组织观察到病毒的吸附及典型的内吞入侵方式 ,在感染中后期的脾脏组织细胞质内观察到病毒发生基质及病毒核壳、包膜形成与病毒的释放。此外 ,在染病鳜鱼的肾、心、肝、及鳃组织亦观察到相同结构的病毒粒子。回接实验证实该病毒为引起鳜鱼暴发流行病的病原 相似文献
15.
目的比较比格犬的子宫、卵巢在间情期与发情期的组织形态学的差异,为后期研究奠定基础。方法用化学发光法测定了23只经产比格母犬的血清性激素水平,选取经血清学鉴定处于发情期的比格犬2只,间情期的比格犬4只的卵巢和子宫标本,中性多聚甲醛固定,石蜡包埋,常规HE染色镜检,拍照。结果间情期犬子宫及其内膜较薄,间质纤维增生,黄体中以初级卵泡为主,可见1~2个次级卵泡,未见成熟卵泡,卵泡和黄体细胞间纤维较多、血管少。发情期犬子宫及其内膜增厚,内膜腺体腔较大,部分腺体呈分枝状弯曲,腺上皮肿大,胞浆淡染,少数可见核下空泡。卵巢中卵泡数量较多,有初级、次级和1~2个成熟卵泡。黄体细胞数量多,排列规则,境界清楚,间质纤维比较疏松,血管多,未见空泡变性。间情期和发情期犬卵巢中未见明显白体。结论间情期比格犬的性激素维持在一比较低的水平,在发情前期雌激素水平迅速增高,而在排卵后比格犬的孕酮水平较高。随发情周期的变化,卵巢和子宫在形态学上发生相应的变化。 相似文献
16.
Giorgio Bernardi 《Journal of molecular evolution》1976,9(1):25-35
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes. 相似文献
17.
In this work, 10 different biomasses were selected which included directly grown energy crops, industrial waste material and different wood types. Each biomass was sieved into six different size fractions and pyrolysed in a fixed bed furnace preheated to 1000 °C to produce a char residue. Intrinsic reactivity during burnout was measured using a non-isothermal thermogravimetric method. Scanning electron microscopy and oil immersion microscopy were used to characterise the morphology of the products. Char morphology was summarised in terms of degree of deformation, internal particle structure and wall thickness. Intrinsic reactivity corresponded directly with these morphology groupings showing a significant correlation between char morphotypes, char reactivity and the initial biomass material. 相似文献
18.
SHARDA KHANDELWAL 《Botanical journal of the Linnean Society. Linnean Society of London》1990,102(3):205-217
Cytological observations on eleven species of Ophioglossum revealed low gametic ( n ) chromosome numbers of 30, 34 and 60 in populations of O.eliminatum , contrasting with an earlier report of n = 90 in the same species. The rest of the species is based on n =120.Cytologically studied species of Ophioglossum exhibit a range of chromosome numbers from n = 30 in O.eliminatum to n =720 in O.reticulatum. The weighted highest common factor (HGF) from all the reported chromosome numbers in twelve species was found to be 30. This number is proposed as the palaeobasic chromosome number for the genuS. Reported chromosome numbers which are not multiples of 30 were subjected to sequential analysis, yielding three distinct ultimate base numbers, 4, 5 and 6, which can produce n = 30 in seven different ways. The neobasic number, n= 120, appears to have arisen through various combinations and permutations of these, theoretically 2401 routes; only a relatively few of these routes exist today, suggesting that extreme selection has been exerted against the majority, and further suggesting that Ophioglossum represents an evolutionary dead end through repeated cycles of polyploidy and is possibly at the verge of extinction. The stoichiometric model of evolution, which derives the various chromosome numbers possessed by the twelve species from the basic and ultimate basic chromosome numbers, is used to explain chromosomal evolution in the genus. 相似文献
19.
The recent accumulation of genomic information of many representative animals has made it possible to trace the evolution of the complement system based on the presence or absence of each complement gene in the analyzed genomes. Genome information from a few mammals, chicken, clawed frog, a few bony fish, sea squirt, fruit fly, nematoda and sea anemone indicate that bony fish and higher vertebrates share practically the same set of complement genes. This suggests that most of the gene duplications that played an essential role in establishing the mammalian complement system had occurred by the time of the teleost/mammalian divergence around 500 million years ago (MYA). Members of most complement gene families are also present in ascidians, although they do not show a one-to-one correspondence to their counterparts in higher vertebrates, indicating that the gene duplications of each gene family occurred independently in vertebrates and ascidians. The C3 and factor B genes, but probably not the other complement genes, are present in the genome of the cnidaria and some protostomes, indicating that the origin of the central part of the complement system was established more than 1,000 MYA. 相似文献
20.
《Arthropod Structure & Development》2017,46(4):662-685
The tarsal setae in 97 species of Leiodidae and eight outgroups were examined using SEM imaging and dissections. Modified adhesive setae present in males are referred to as “male tenent setae” (MTS). In most cases, dilated tarsomeres were associated with MTS, which were always present on the protarsi and sometimes the mesotarsi. MTS are reported for the first time on the mesotarsi of Leptodirini and on the metatarsi in two genera of Sogdini. Contrary to reports in the literature, the reduction in the number of the MTS bearing mesotarsomeres is considered a derived condition. Both sexes of Leptinus (Platypsyllinae) have modified setae (referred to as tenent setae in the literature), probably related to their specialised association with mammals, and a patch of MTS was recognized for the first time among those modified setae among males. Four main types of MTS are recognised: (1) a plesiomorphic discoidal type that has a shaft with a round cross-section and maintains a similar diameter throughout its length until forming the expanded discoidal terminal plate; (2) a minidiscoidal type, similar to discoidal but with a relatively small terminal plate, found in Cholevinae; (3) a conical type, present in Leiodinae (excluding Estadiini) where the shaft increases in diameter until forming the terminal plate; and (4) a spatulate type, where an even wider terminal plate has a lateral projection, derived from the conical form and synapomorphic for the leiodine tribes Pseudoliodini, Scotocryptini, and possibly Agathidiini. 相似文献