首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A frequency analysis was performed on an analogue model of the vertebrate cone retina. Bode plots of magnitude and phase angle shifts were obtained from the various stages of the Model. While the cones were non-linear, the rest of the Model was linear and results could be explained by cascading of lowpass filters with linear summation of antagonistic inputs of differing time constants. The cut-off frequency of the Model was determined by the first stage, which was the cone pedicle, while the slope of the db magnitude versus frequency curve increased for each “synaptic delay” in the pathway. An initial increase in the magnitude of the output voltage at any given stage occurred up to the cut-off frequency and was due to the antagonistic input voltages of differing time courses. Physiological data were discussed in terms of the Model.  相似文献   

2.
Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network.  相似文献   

3.
A model of the vertebrate cone retina was tested with physiological stimuli. Results confirm previous findings that, except for photoreceptors, the spatial and temporal properties of simulated retinal elements conform to a linear system. The model is consistent with known physiological correlates. Tonic units detect intensity when the light spot is within the center field, while phasic units detect movement across borders of contrast. There is a dynamic balance between the tonic and phasic channels: the tonic channel is favored by a center field input voltage, while the phasic channel is favored by a surround field input voltage to bipolar cells. The ON discharge of the phasic ganglion cell is developed by the excitatory center field input to the depolarizing-center bipolar cell, which has the shortest delay, while the OFF discharge is the result of the excitatory surround field input voltage to the hyperpolarizing-center bipolar cell, which has the longest delay.  相似文献   

4.
This static bipolar cell (BC) model of the human fovea is based on a number of reasonable assumptions. The human fovea is directly responsible for visual acuity and color vision. The fovea can be considered as having two parts; a central fovea with only red- and green-sensitive cones and a parafovea with blue-sensitive cones added to the other two. A cone mosaic can be precisely organized spatially into unit hexagons that specify inputs to horizontal cells (HC) and BCs. The retina up to and including BCs is piece-wise linear, i.e. at a given steady-state adapting light intensity BC outputs are linear functions of the physical image. BC centers receive inputs directly from weighted cones, while antagonistic surrounds receive inverted inputs from HCs. Appropriate optical and chromatic filtering due to the eye that are taken from human data are incorporated into the model. Chromatic aberrations are simulated by three separate point spread functions that also are taken from human data. Automatic gain control of cones is a function of intensity and wavelength of the steady adapting light.The major part of this work was done while the author was a Senior Research Associate of the National Research Council, USA  相似文献   

5.
Spatial organization of the cone mosaic of the generalized vertebrate retina consists of rows of red and green cones alternating with rows of blue and blank cones. Cone inputs to retinal elements are defined spatially by red and green unit hexagons. Topological analysis entails determining for each cone in the mosaic the number of each cone type present in the unit hexagon which the activated cone can influence via electrical coupling between cones and/or stray light. Only weighted inputs in one-half of a sextant of the unit hexagon need be designated, since all other weighted inputs can be determined by rules giving systematic transformations of all cone types from one sextant to another: these rules arise from symmetries of the cone mosaic. Four retinal types are possible depending on replacement of blank cones by specific cone types; three cone-dominant retinas, where all blank cones are replaced by a specific cone type, and two forms of a trichromatic retina, where blank cones are replaced by equal numbers of red and green cones. The weighted input is the sum of individual cone type contributions and depends on the number of each cone type in the unit hexagon which can influence the cone in question. Weighted inputs for cone-dominant retinas are readily found by replacing blank cones with the proper cone type, while weighted inputs for trichromatic retinas require use of a specified cone mosaic to determine extra red and green cones. Receptive field size of post-cone elements as well as overlap of the center and surround fields of annular organized receptive fields of retinal elements increased with increasing values for attenuation factors.  相似文献   

6.
Electronic simulation of generalized vertebrate cone retina consists of 43x41 grid of red-, green-, and blue-sensitive cones. Each retinal element is simulated by a linear summator in series with a leaky integrator and spatial-temporal properties are developed by spatial organization of cone mosaic into unit hexagons and interplay of antagonistic inputs of differing time courses. Model has full compliments of horizontal and bipolar cells including color- and noncolor coding as well as single- and double-opponent receptive fields for bipolar cells. Electronic simulation also has negative feedback from L-horizontal cells to cones. Ganglion cells are formed by convergence of 7 bipolar cells, either all same and thus homogeneous, or else with a central-DPBC (or HPBC) and 6 surround-HPBCs (or DPBCs) and thus non-homogeneous. Responses of color- and non-color-coded ganglion cells as well as single- and double-opponents are investigated with stationary and moving light spots using white and colored lights. While responses to stationary light spots are predictable from digital models, responses to moving spots are complicated by differing time lags of components involved in total response. Therefore, responses to moving stimuli are more readily simulated by analogue models.  相似文献   

7.
The spectral and dynamic properties of cone-driven horizontal cells in carp retina were evaluated with silent substitution stimuli and/or saturating background illumination. The aim of this study was to describe the wiring underlying the spectral sensitivity of these cells. We will present electrophysiological data that indicate that all cone-driven horizontal cell types receive input from all spectral cone types, and we will present evidence that all cone-driven horizontal cell types feedback to all spectral cone types. These two findings are the basis for a model for the spectral and dynamic behavior of all cone-driven horizontal cells in carp retina. The model can account for the spectral as well as the dynamic behavior of the horizontal cells. It will be shown that the strength of the feedforward and feedback pathways between a horizontal cell and a particular spectral cone type are roughly proportional. This model is in sharp contrast to the Stell model, where the spectral behavior of the three horizontal cell types is explained by a cascade of feedforward and feedback pathways between cones and horizontal cells. The Stell model accounts for the spectral but not for the dynamic behavior of the horizontal cells.  相似文献   

8.
Electronic analogue of my theoretical model of generalized vertebrate cone retina [Siminoff: J. Theor. Biol. 86, 763 (1980)] is presented. Cone mosaic is simulated by 25x21 grid of phototransistors that have colored filters mounted in front of then to produce red-, green-, and blue-sensitive cones arranged in a trichromatic retina. Each retinal element is simulated by Summator-Integrator and unit gain voltage invertes are used to give correct polarities to output voltages. Dynamic properties of retinal elements are developed solely by temporal interplay of antagonistic input voltages with differing time courses, and spatial organization of receptive fields is developed by unit hexagons that precisely define cone input voltages to subsequent elements. Electronic model contains both color- and non-colorcoded channels. Negative feedback from L-horizontal cells to cones, electrical coupling of like-cones, and electrical coupling of like-horizontal cells are simulated by feedfoward circuits. Stray light is present due to light scattering properties of colored filters used to simulate color selectivety of cones. Stationary and moving spots of white and colored lights of varied sizes and intensities are used to study characteristics of electronic analogue. Results demonstrate practicality of electronic simulation to function analogous to real cone retinas to process visual stimuli and give information to higher centers as to size, shape, color and motion of objects in visual world.  相似文献   

9.
Summary There are conflicting reports about the existence and nature of a short-wavelength cone (S-cone) contribution to ganglion cells in the goldfish retina. The present study sought to resolve these discrepancies by examining the S-cone contribution while recording from single ganglion cells in the excised, isolated goldfish retina. The effect of variations in the retinal preparation (gas content and type of background lighting during recording) on the S-cone input was also examined. Cells were classified into one of three types based on the responses at light onset and offset, when responses were driven only by the long-wavelength cone system (L-cones) of the receptive field's center (L+/–(on-excitation/off-inhibition) L–/+, and L+/+). With rare exceptions, the threshold spectral sensitivities of the centers and surrounds of cells that possessed opposite on and off responses (L+/–and L–/+) exhibited S-cone contributions, either prior to and/or during chromatic adaptation of the middle-and long-wavelength cones; the S-cone response was antagonistic to the L-cone input. The L + / + center cells also contained a S-cone input, but it was synergistic to the L-cone input at suprathreshold intensities. These findings were robust across all of the retinal preparations employed. The discrepancies in the previous work were probably due to the incomplete classification of cells because of the use of threshold responses only.This work is based in part on a dissertation submitted by RMM in partial fulfillment of the requirements for a PhD degree from the New School for Social Research, New York, New York  相似文献   

10.
Visual stimuli are detected and conveyed over a wide dynamic range of light intensities and frequency changes by specialized neurons in the vertebrate retina. Two classes of retinal neurons, photoreceptors and bipolar cells, accomplish this by using ribbon-type active zones, which enable sustained and high-throughput neurotransmitter release over long time periods. ON-type mixed bipolar cell (Mb) terminals in the goldfish retina, which depolarize to light stimuli and receive mixed rod and cone photoreceptor input, are suitable for the study of ribbon-type synapses both due to their large size (~10-12 μm diameter) and to their numerous lateral and reciprocal synaptic connections with amacrine cell dendrites. Direct access to Mb bipolar cell terminals in goldfish retinal slices with the patch-clamp technique allows the measurement of presynaptic Ca2+ currents, membrane capacitance changes, and reciprocal synaptic feedback inhibition mediated by GABAA and GABAC receptors expressed on the terminals. Presynaptic membrane capacitance measurements of exocytosis allow one to study the short-term plasticity of excitatory neurotransmitter release 14,15. In addition, short-term and long-term plasticity of inhibitory neurotransmitter release from amacrine cells can also be investigated by recordings of reciprocal feedback inhibition arriving at the Mb terminal 21. Over short periods of time (e.g. ~10 s), GABAergic reciprocal feedback inhibition from amacrine cells undergoes paired-pulse depression via GABA vesicle pool depletion 11. The synaptic dynamics of retinal microcircuits in the inner plexiform layer of the retina can thus be directly studied.The brain-slice technique was introduced more than 40 years ago but is still very useful for the investigation of the electrical properties of neurons, both at the single cell soma, single dendrite or axon, and microcircuit synaptic level 19. Tissues that are too small to be glued directly onto the slicing chamber are often first embedded in agar (or placed onto a filter paper) and then sliced 20, 23, 18, 9. In this video, we employ the pre-embedding agar technique using goldfish retina. Some of the giant bipolar cell terminals in our slices of goldfish retina are axotomized (axon-cut) during the slicing procedure. This allows us to isolate single presynaptic nerve terminal inputs, because recording from axotomized terminals excludes the signals from the soma-dendritic compartment. Alternatively, one can also record from intact Mb bipolar cells, by recording from terminals attached to axons that have not been cut during the slicing procedure. Overall, use of this experimental protocol will aid in studies of retinal synaptic physiology, microcircuit functional analysis, and synaptic transmission at ribbon synapses.  相似文献   

11.
The model is based on the concept that non-linear lateral interaction at the inner plexiform layer accounts for most of the specialization and marked non-linearities in cat's retinal ganglion cell responses. The inputs to the lateral interaction processes are a spatio-temporal signal and its retarded, as suggested by the behaviour of simple ganglion cells. Lateral interaction in the model consists of lateral linear inhibition followed by local half wave rectification. The resulting signals are weighted and summated by the ganglion cell thereafter. A transparent and general expression is obtained for the response of the cell model which, albeit its simplicity, leads to most of known types of non-linear responses, including the rarely encountered specialized cells in cat's, retina, except colour coding units. For negligible lateral interaction, the model reduces to spatio-temporal linear models under the two paths hypothesis. A discussion of the possible role of anatomical units in these retinal processes in presented, where a general interpretation for visual processing in cat's retina evolves from.  相似文献   

12.
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.  相似文献   

13.
Greenberg KP  Pham A  Werblin FS 《Neuron》2011,69(4):713-720
Retinal degenerative diseases cause photoreceptor loss and often result in remodeling and deafferentation of the inner retina. Fortunately, ganglion cell morphology appears to remain intact long after photoreceptors and distal retinal circuitry have degenerated. We have introduced the optical neuromodulators channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR) differentially into the soma and dendrites of ganglion cells to recreate antagonistic center-surround receptive field interactions. We then reestablished the physiological receptive field dimensions of primate parafoveal ganglion cells by convolving Gaussian-blurred versions of the visual scene at the appropriate wavelength for each neuromodulator with the Gaussians inherent in the soma and dendrites. These Gaussian-modified ganglion cells responded with physiologically relevant antagonistic receptive field components and encoded edges with parafoveal resolution. This approach bypasses the degenerated areas of the distal retina and could provide a first step in restoring sight to individuals suffering from retinal disease.  相似文献   

14.
15.
The responses of neurons in sensory cortex depend on the summation of excitatory and inhibitory synaptic inputs. How the excitatory and inhibitory inputs scale with stimulus depends on the network architecture, which ranges from the lateral inhibitory configuration where excitatory inputs are more narrowly tuned than inhibitory inputs, to the co-tuned configuration where both are tuned equally. The underlying circuitry that gives rise to lateral inhibition and co-tuning is yet unclear. Using large-scale network simulations with experimentally determined connectivity patterns and simulations with rate models, we show that the spatial extent of the input determined the configuration: there was a smooth transition from lateral inhibition with narrow input to co-tuning with broad input. The transition from lateral inhibition to co-tuning was accompanied by shifts in overall gain (reduced), output firing pattern (from tonic to phasic) and rate-level functions (from non-monotonic to monotonically increasing). The results suggest that a single cortical network architecture could account for the extended range of experimentally observed response types between the extremes of lateral inhibitory versus co-tuned configurations.  相似文献   

16.
Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells.  相似文献   

17.
Chatterjee S  Callaway EM 《Neuron》2002,35(6):1135-1146
The magnocellular visual pathway is believed to receive input from long (L) and middle (M), but not short (S), wavelength-sensitive cones. Recording from neurons in magnocellular layers of lateral geniculate nucleus (LGN) in macaque monkeys, we found that magnocellular neurons were unequivocally responsive to S cone-isolating stimuli. A quantitative analysis suggests that S cones provided about 10% of the input to these cells, on average, while L:M ratios were far more variable. S cone signals influenced responses with the same sign as L and M cone inputs (i.e., no color opponency). Magnocellular afferent recordings following inactivation of primary visual cortex demonstrated that S cone signals were feedforward in nature and did not arise from cortical feedback to LGN  相似文献   

18.
To gain a deeper understanding of the transmission of visual signals from retina through the lateral geniculate nucleus (LGN), we have used a simple leaky integrate and-fire model to simulate a relay cell in the LGN. The simplicity of the model was motivated by two questions: (1) Can an LGN model that is driven by a retinal spike train recorded as synaptic (‘S’) potentials, but does not include a diverse array of ion channels, nor feedback inputs from the cortex, brainstem, and thalamic reticular nucleus, accurately simulate the LGN discharge on a spike-for-spike basis? (2) Are any special synaptic mechanisms, beyond simple summation of currents, necessary to model experimental recordings? We recorded cat relay cell responses to spatially homogeneous small or large spots, with luminance that was rapidly modulated in a pseudo-random fashion. Model parameters for each cell were optimized with a Simplex algorithm using a short segment of the recording. The model was then tested on a much longer, distinct data set consisting of responses to numerous repetitions of the noisy stimulus. For LGN cells that spiked in response to a sufficiently large fraction of retinal inputs, we found that this simplified model accurately predicted the firing times of LGN discharges. This suggests that modulations of the efficacy of the retino-geniculate synapse by pre-synaptic facilitation or depression are not necessary in order to account for the LGN responses generated by our stimuli, and that post-synaptic summation is sufficient.  相似文献   

19.
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround-receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 microM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.  相似文献   

20.
The presence of different receptor populations within a given brain area can be effectively evaluated via the local injections of defined receptor agonists and antagonists. Using this approach, it has become evident that the nucleus basalis - cortical cholinergic pathway possesses an inhibitory GABAergic input to the nucleus basalis from the nucleus accumbens as well as a positive glutamatergic feedback from the cortex. The septal-hippocampal cholinergic pathway also possesses an inhibitory GABAergic regulation which consists of a large GABAergic interneuron population in the septum. A glutamatergic feedback from the hippocampus is also present. These regulatory inputs to cholinergic cells are not tonically active but appear to function as phasic modulators of cholinergic transmission in both pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号