首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human liver CYP3A4 is an endoplasmic reticulum (ER)-anchored hemoprotein responsible for the metabolism of >50% of clinically prescribed drugs. After heterologous expression in Saccharomyces cerevisiae, it is degraded via the ubiquitin (Ub)-dependent 26S proteasomal pathway that utilizes Ubc7p/Cue1p, but none of the canonical Ub-ligases (E3s) Hrd1p/Hrd3p, Doa10p, and Rsp5p involved in ER-associated degradation (ERAD). To identify an Ub-ligase capable of ubiquitinating CYP3A4, we examined various in vitro reconstituted mammalian E3 systems, using purified and functionally characterized recombinant components. Of these, the cytosolic domain of the ER-protein gp78, also known as the tumor autocrine motility factor receptor (AMFR), an UBC7-dependent polytopic RING-finger E3, effectively ubiquitinated CYP3A4 in vitro, as did the UbcH5a-dependent cytosolic E3 CHIP. CYP3A4 immunoprecipitation coupled with anti-Ub immunoblotting analyses confirmed its ubiquitination in these reconstituted systems. Thus, both UBC7/gp78 and UbcH5a/CHIP may be involved in CYP3A4 ERAD, although their relative physiological contribution remains to be established.  相似文献   

3.
Tumor autocrine motility factor (AMF) has been detected in and purified from serum-free conditioned medium of human HT-1080 fibrosarcoma cells. Under nonreducing conditions, AMF migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band of 55 kDa but under reducing conditions as a band of 64 kDa. Two-dimensional polyacrylamide gel electrophoresis of the purified AMF resolved two groups of polypeptides with isoelectric points of 6.1 and 6.2 (majors), 6.35 and 6.4 (minors). Purified AMF stimulated HT-1080 cell migration in a dose-dependent fashion. The motility stimulation of the fibrosarcoma cells with AMF is associated with the phosphorylation of the AMF receptor, a 78-kDa cell surface glycoprotein (gp78), suggesting protein kinase participation in migratory signal transduction. The gene encoding gp78 was cloned from an HT-1080 fibrosarcoma complementary DNA library. The deduced sequence encodes a polypeptide of 323 amino acids. The nucleotide and predicted amino acid sequence of the gp78 reveals significant homology with the human suppressor/oncogene p53 protein.  相似文献   

4.
The autocrine motility factor (AMF) promotes cellular locomotion or invasion, and regulates tumor angiogenesis or ascites accumulation. These signals are triggered by binding between AMF and its receptor (AMFR), a glycoprotein on the cell surface. AMF has been identified as phosphohexose isomerase (PHI). Previous reports have suggested that the substrate-recognition of exo-PHI is significant for receptor binding. Crystallographic studies have shown that AMF consists of three domains, and that the substrate or inhibitor of PHI is stored between the large and small domains, corresponding to approximately residues 117-288. Here, site-directed mutagenesis was used to investigate 18 recombinant human AMF point mutants involving critical amino acid residues for substrate or enzyme inhibitor recognition or binding. Mutation of residues that interact with the phosphate group of the PHI substrate significantly reduced the cell motility-stimulating activity. Their binding capacities for AMFR were also lower than wild-type human AMF. Mutants that retained the enzymic activity showed the motility-stimulating effect and receptor binding and had sensitivity to a PHI inhibitor. Mutant AMFR lacking the N-sugar chain was expressed on the cell membrane but did not respond to AMF-stimulation, and N-glycosidase-treated AMFR did not compete with receptor binding of AMF. Furthermore, the AMF domains that contain the substrate storage domain and C-terminal region stimulate cell locomotion. These results suggest that the N-glyco side-chain of AMFR is a trigger and that interaction between the 117-C-terminal part of AMF and the extracellular core protein of AMFR is needed during AMF-AMFR interactions.  相似文献   

5.
自分泌游动因子(autocrine motility factor,AMF)由肿瘤细胞表达并自分泌产生,与自分泌游动因子受体(autocrine motility factor receptor,AMFR,gp78)结合,可刺激肿瘤细胞移动.AMF是一个家族,与磷酸己糖异构酶(phosphohexose isomerase,PHI)、神经白细胞素(neuroleukin,NLK)和成熟因子(maturation factor,MF)是同一前体基因的表达产物,它们与AMFR结合后能介导多方面的生物学功能.本文重点介绍有关AMF和AMFR蛋白分子的结构特点及其肿瘤生物学意义的研究进展.  相似文献   

6.
7.
Autocrine motility factor receptor (AMFR) is a cell surface glycoprotein of molecular weight 78,000 (gp78), mediating cell motility signaling in vitro and metastasis in vivo. Here, we cloned the full-length cDNAs for both human and mouse AMFR genes. Both genes encode a protein of 643 amino acids containing a seven transmembrane domain, a RING-H2 motif and a leucine zipper motif and showed a 94.7% amino acid sequence identity to each other. Analysis of the amino acid sequence of AMFR with protein databases revealed no significant homology with all known seven transmembrane proteins, but a significant structural similarity to a hypothetical protein of Caenorhabditis elegans, F26E4.11. Thus, AMFR is a highly conserved gene which encodes a novel type of seven transmembrane protein.  相似文献   

8.
Autocrine motility factor (AMF) is internalized via a receptor-mediated, dynamin-dependent, cholesterol-sensitive raft pathway to the smooth endoplasmic reticulum that is negatively regulated by caveolin-1. Expression of AMF and its receptor (AMFR) is associated with tumor progression and malignancy; however, the extent to which the raft-dependent uptake of AMF is tumor cell-specific has yet to be addressed. By Western blot and cell surface fluorescence-activated cell sorter (FACS) analysis, AMFR expression is increased in tumorigenic MCF7 and metastatic MDA-231 and MDA-435 breast cancer cell lines relative to dysplastic MCF10A mammary epithelial cells. AMF uptake, determined by FACS measurement of protease-insensitive internalized fluorescein-conjugated AMF, was increased in MCF7 and MDA-435 cells relative to MCF-10A and caveolin-1-expressing MDA-231 cells. Uptake of fluorescein-conjugated AMF was dynamin-dependent, methyl-beta-cyclodextrin- and genistein-sensitive, reduced upon overexpression of caveolin-1 in MDA-435 cells, and increased upon short hairpin RNA reduction of caveolin-1 in MDA-231 cells. Tissue microarray analysis of invasive primary human breast carcinomas showed that AMFR expression had no impact on survival but did correlate significantly with expression of phospho-Akt. Phospho-Akt expression was increased in AMF-internalizing MCF7 and MDA-435 breast carcinoma cells. AMF uptake in these cells was reduced by phosphatidylinositol 3-kinase inhibition but not by regulators of macropinocytosis such as amiloride, phorbol ester, or actin cytoskeleton disruption by cytochalasin D. The raft-dependent endocytosis of AMF therefore follows a distinct phosphatidylinositol 3-kinase-dependent pathway that is up-regulated in more aggressive tumor cells.  相似文献   

9.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

10.
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and appears to arise from developing striated muscle-forming cells. Since insulin-like growth factor II (IGF-II) is involved in normal muscle growth and maturation and elevated IGF-II mRNA levels have previously been reported in rhabdomyosarcomas, we have been studying the possible role of IGF-II in the unregulated growth and invasive potential of these embryonal tumors. In this study, we demonstrate that 13 of 14 rhabdomyosarcoma tumors express high levels of IGF-II mRNA relative to normal adult muscle and also express mRNA for the type I IGF receptors on their cell surface, the receptor thought to mediate the effects of IGF-II on muscle cells. We have established several rhabdomyosarcoma cell lines in mitogen-free media and demonstrate that these cells express type I IGF receptors on their cell surface and secrete IGF-II into the media. Exogenous IGF-II is able to stimulate cellular motility in these cell lines as assayed in a modified Boyden chamber. Finally, alpha IR-3, a type I receptor antagonist, inhibits the growth of these cell lines in serum-free media but does not inhibit IGF-II-induced motility of these cells. These data suggest that endogenously produced IGF-II functions as an autocrine growth and motility factor in many rhabdomyosarcoma tumors. The mitogenic actions of IGF-II are mediated through a domain of the type I IGF receptor that is blocked by alpha IR-3. IGF-II-induced motility may be mediated through an alternative signaling pathway.  相似文献   

11.
Autocrine growth factors produced by epithelial cells mediate the development and proliferation of neoplastic human prostate tissue. Various approaches have been used to down-regulate neoplastic growth of prostate cancer using natural flavonoids, soluble receptors, pseudo-ligands, monoclonal antibodies and tyrosine kinase inhibitors (tyrphostins). Selected growth factor/growth factor receptor loops (mainly TGFα/EGFR and IGFs/IGFIR) have been proposed as regulators of prostate cancer cell growth. We have previously determined that blockade of IGFIR or VEGF2R signaling pathways by tyrphostin AG1024 and SU1498 inhibits autocrine growth and viability of DU145 cells in vitro. Recently, we compared the activity of AG1024 and SU1498 with the inhibiting effect of tyrphostin A23 (a selective inhibitor of EGFR). The results described in this paper confirm that DU145 cells do not produce IGFI or EGF. In contrast, DU145 cells produce a great amount of VEGF, much more than TGFα (about 60-fold), and VEGF may be the real autocrine growth factor of the investigated cells. The results indicate that the growth of DU145 may be regulated by at least three autocrine loops: TGFα/EGFR, IGFII/IGFIR and VEGF/VEGFR2. Neither AG1024 nor SU1498 affected the production of TGFα substantially, which excludes the possibility that IGFRs or VEGFR2 inhibitors arrest the growth of these cells by inhibition of synthesis and/or secretion of TGFα. The obtained data indicate that all tree investigated tyrphostins (AG1024, SU1498 and A23) inhibit signal transmission by Akt (PKB), ERK(1/2), Src and STAT in a similar manner. A comparison of the effects of the investigated tyrphostins indicates that TGFα, IGFII and VEGF stimulate cell growth by affecting the same signaling pathway. The hypothesis was confirmed by the effect of the investigated tyrphostins on activation of EGFR. All these inhibitors decreased phosphorylation of EGFR to the same extent, and after the same time of incubation with cell culture. These results strongly suggest that stimulation of EGFR kinase is the main step in the initiation of mitogen signaling in DU145 cells, regardless of the type of ligand (TGFα, IGFs or VEGF) and their specific receptors.  相似文献   

12.
13.
Abstract. Regulation of the growth of breast cancer cells is the result of a complex interaction between steroid hormones and growth factors, and in particular of oestrogen and insulin-like growth factors (IGF). Alteration of any one mitogenic component can affect the cell response to other pathways. Previous work has shown that increased autocrine production of IGF-II from a transfected inducible expression vector can result in reduced oestrogen sensitivity of growth of MCF-7 human breast cancer cells. This report describes alterations to non-oestrogen regulated pathways of cell growth following enhanced IGF-II expression in these transfected MI7 cells. Serum sensitivity of cell growth in the absence of oestrogen was found to differ between MI7 and untransfected MCF-7 cells, in that growth of MI7 but not MCF-7 cells was strongly inhibited by high serum levels. Increased serum had no effect on levels of IGF-II mRNA, IGFIR, IGFBP4 mRNA, or IGFBP secreted in MI7 cells. However, growth inhibition by serum in MI7 cells could be overcome by increasing levels of IGF-II in the serum or by removal of IGFBP onto polycarbonate membranes. Thus, the growth inhibition by serum in MI7 cells is concluded to result from the increased levels of IGFBP added with higher serum. This would support an inhibitory role for IGFBP on growth of breast cancer cells when cell growth is being driven by IGF pathways in the absence of oestrogen, and would suggest that cellular sensitivity to such factors can depend on levels of endogenous IGF production.  相似文献   

14.
The MDA 468 human breast carcinoma cell line was examined for changes in epidermal growth factor (EGF) receptor synthesis and degradation under the influence of EGF. This cell line was used because it overexpresses the EGF receptor such that each cell has 10(6) receptors, but unlike the well-studied A431 cell, its receptor gene is amplified but is not rearranged. On exposure to EGF, total cellular receptor protein, measured by immunoprecipitation with monoclonal antibody B1D8, is reduced. The half-life of receptor metabolically labeled with L-[35S]methionine is 24 h in the absence of EGF and is reduced to 12 h in the presence of 10(-9) M EGF. To measure the effect of EGF on synthesis of the receptor, pulse labeling conditions were selected in which the rate of synthesis of the receptor precursor were followed. EGF had no significant effect on the rate of general protein synthesis in these cells, yet stimulated the synthesis of the EGF receptor 1.8-fold over the unstimulated rate. This increase in receptor precursor synthesis showed time and dose dependence. Stimulation could be detected after 3 h exposure to EGF with a maximum at 6-8 h. A concentration of 10(-11) M EGF gave detectable stimulation with maximal stimulation occurring at 10(-9) M. Longer times and higher concentrations gave submaximal stimulation. A similar dose-response relationship was observed when the rate of mature 170-kDa receptor protein synthesis was measured. These studies demonstrate that EGF stimulates the synthesis of it own receptor. Downregulation of the receptor by EGF results from an increased rate of receptor degradation and not decreased synthesis.  相似文献   

15.
Insulin-like growth factors (IGFs) are potent mitogens for a variety of cancer cells in vitro. A paracrine/autocrine role of IGF-II in the growth of breast and prostate cancer cells has been suggested. Information on cell-type-specific IGF-II expression in vivo in the breast and prostate is, however, limited. Thus, cell types expressing IGF-II mRNA and protein in tumors were identified by in situ hybridization and immunohistochemistry. Of 36 prostate, 17 breast, and 10 bladder cancers, and 9 paraganglioma tissues examined, IGF-II was expressed in more than 50% of prostate, breast, and bladder tumors, and in 100% of paraganglioma tumors. Expression levels of IGF-II were highest in the paraganglioma and bladder followed by prostate and breast tumors. In all the tumors expressing IGF-II, both mRNA and protein were localized to malignant cells, expression in the stroma being minimal. Since previous studies had indicated that an incompletely processed form of 15-kDa IGF-II exhibited higher mitogenic potency than the completely processed 7.5-kDa IGF-II form, the quantity and size of IGF-II proteins expressed in these tumors were analyzed by Western immunoblotting. Greater expression of 15-kDa IGF-II relative to the 7.5-kDa IGF-II form was clearly demonstrated in all six prostate cancers and in half of the two breast and four bladder cancers examined. The results are consistent with the hypothesis that the 15-kDa form of IGF-II expressed in cancerous cells contributes to autocrine cancer cell growth in vivo. Received: 11 June 1997 / Accepted: 22 August 1997  相似文献   

16.
Potentially 96 splice variants among four genes that code for the human heparin-binding fibroblast growth factor receptor family complicate study of structure, metabolism, and function of single isoforms in mammalian cells. As an alternative, we expressed structural subdomains and isoforms of the flg receptor gene in bacteria and baculoviral-infected insect cells. We developed and characterized a panel of 16 isoform and domain-specific polyclonal and monoclonal antibodies. The panel of antibodies was used to distinguish mature glycosylated ligand-binding and kinase-active and -inactive recombinant isoforms in baculoviral insect cells and transfected mammalian cells and natural isoforms in rat prostate and human liver cells. The results revealed a cell type-specific expression of the flg gene and isoforms that result from combinations of splice variations. Reactive epitopes of monoclonal antibodies against both the three (alpha) and two (beta) immunoglobulin-like disulfide loop extracellular domain isoforms were mapped by cross-reactivity with synthetic polypeptide sequences and deletion mutants expressed in bacteria. The native alpha and beta receptor isoforms differed in display of shared epitopes and suggested that the NH2-terminal Loop I and COOH-terminal Loops II and III of the alpha isoform are interactive. Although the common Loops II and III appear qualitatively sufficient for ligand binding, the results suggest that tertiary relationships among loops in the three and two loop isoforms are distinct and, therefore, the two isoforms may have distinct activities. Spatial models for arrangement of immunoglobulin-like loops in the extracellular domain of the two isoforms are presented.  相似文献   

17.
Epidermal growth factor receptor (EGFR) biology and human oral cancer   总被引:5,自引:0,他引:5  
Dysregulation of the epidermal growth factor receptor (EGFR) is one of the most frequently studied molecular events leading to oral carcinogenesis. Overexpression of EGFR is a common event in many human solid tumors. Elevated levels of EGFR mRNA in human cancer occur with and without gene rearrangement. Structural alterations in the receptor can also result in the dysregulation of the EGFR pathway. EGFR overexpression without gene re-arrangement is frequently observed in human oral cancers. However, little is known whether structural alterations in the receptor or perturbations in the EGFR pathway contribute to oral carcinogenesis. Several preliminary studies suggest that EGFR-targeted therapeutic approaches might be successful in controlling oral cancer.  相似文献   

18.
19.
PTK6, also known as Brk, is highly expressed in over 80% of breast cancers. In the last decade several substrates and interaction partners were identified localising PTK6 downstream of HER receptors. PTK6 seems to be involved in progression of breast tumours, in particular in HER receptor signalling. Here, we show the down-regulation effects of PTK6 in the T47D, BT474 and JIMT-1 breast cancer cell lines. PTK6 knockdown leads to a decreased phosphorylation of HER2, PTEN, MAPK (ERK), p38 MAPK, STAT3 and to a reduced expression of cyclin E. Our findings show that silencing PTK6 impairs the downstream targets of HER receptors and consequently the activation of signalling molecules. Furthermore, lower levels of PTK6 result in reduced migration of T47D and JIMT-1 breast cancer cells. Due to decreased migration, the PTK6 RNA interference might contribute to reduced metastasis and malignant potential of breast cancer cells. Since PTK6 plays an important role in HER receptor signal transduction, its down-regulation might be suitable for future therapy approaches in breast cancer.  相似文献   

20.
Breast cancer cells develop resistance to endocrine therapies by shifting between estrogen receptor (ER)-regulated and growth factor receptor (GFR)-regulated survival signaling pathways. To study this switch, we propose a mathematical model of crosstalk between these pathways. The model explains why MCF7 sub-clones transfected with HER2 or EGFR show three GFR-distribution patterns, and why the bimodal distribution pattern can be reversibly modulated by estrogen. The model illustrates how transient overexpression of ER activates GFR signaling and promotes estrogen-independent growth. Understanding this survival-signaling switch can help in the design of future therapies to overcome resistance in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号