首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unusually low 78% amino acid identity between the orthologous human SLC26A6 and mouse slc26a6 polypeptides prompted systematic comparison of their anion transport functions in Xenopus oocytes. Multiple human SLC26A6 variant polypeptides were also functionally compared. Transport was studied as unidirectional fluxes of (36)Cl(-), [(14)C]oxalate, and [(35)S]sulfate; as net fluxes of HCO(3)(-) by fluorescence ratio measurement of intracellular pH; as current by two-electrode voltage clamp; and as net Cl(-) flux by fluorescence intensity measurement of relative changes in extracellular and intracellular [Cl(-)]. Four human SLC26A6 polypeptide variants each exhibited rates of bidirectional [(14)C]oxalate flux, Cl(-)/HCO(3)(-) exchange, and Cl(-)/OH(-) exchange nearly equivalent to those of mouse slc26a6. Cl(-)/HCO(3)(-) exchange by both orthologs was cAMP-sensitive, further enhanced by coexpressed wild type cystic fibrosis transmembrane regulator but inhibited by cystic fibrosis transmembrane regulator DeltaF508. However, the very low rates of (36)Cl(-) and [(35)S]sulfate transport by all active human SLC26A6 isoforms contrasted with the high rates of the mouse ortholog. Human and mouse orthologs also differed in patterns of acute regulation. Studies of human-mouse chimeras revealed cosegregation of the high (36)Cl(-) transport phenotype with the transmembrane domain of mouse slc26a6. Mouse slc26a6 and human SLC26A6 each mediated electroneutral Cl(-)/HCO(3)(-) and Cl(-)/OH(-) exchange. In contrast, whereas Cl(-)/oxalate exchange by mouse slc26a6 was electrogenic, that mediated by human SLC26A6 appeared electroneutral. The increased currents observed in oocytes expressing either mouse or human ortholog were pharmacologically distinct from the accompanying monovalent anion exchange activities. The human SLC26A6 polypeptide variants SLC26A6c and SLC26A6d were inactive as transporters of oxalate, sulfate, and chloride. Thus, the orthologous mouse and human SLC26A6 proteins differ in anion selectivity, transport mechanism, and acute regulation, but both mediate electroneutral Cl(-)/HCO(3)(-) exchange.  相似文献   

2.
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ~140 mM HCO(3)(-) or more, mouse and rat ducts secrete ~40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.  相似文献   

3.
The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.  相似文献   

4.
Regulation of anion exchanger Slc26a6 by protein kinase C   总被引:1,自引:0,他引:1  
SLC26A6 (CFEX, PAT1) is an anion exchanger expressed in several tissues including renal proximal tubule, pancreatic duct, small intestine, liver, stomach, and heart. It has recently been reported that PKC activation inhibits A6-mediated Cl/HCO3 exchange by disrupting binding of carbonic anhydrase to A6. However, A6 can operate in HCO3-independent exchange modes of physiological importance, as A6-mediated Cl/oxalate exchange plays important roles in proximal tubule NaCl reabsorption and intestinal oxalate secretion. We therefore examined whether PKC activation affects HCO3-independent exchange modes of Slc26a6 functionally expressed in Xenopus oocytes. We found that PKC activation inhibited Cl/formate exchange mediated by Slc26a6 but failed to inhibit the related anion exchanger pendrin (SLC26A4) under identical conditions. PKC activation inhibited Slc26a6-mediated Cl/formate exchange, Cl/oxalate exchange, and Cl/Cl exchange to a similar extent. The inhibitor sensitivity profile and the finding that PMA-induced inhibition was calcium independent suggested a potential role for PKC-. Indeed, the PKC--selective inhibitor rottlerin significantly blocked PMA-induced inhibition of Slc26a6 activity. Localization of Slc26a6 by immunofluorescence microscopy demonstrated that exposure to PKC activation led to redistribution of Slc26a6 from the oocyte plasma membrane to the intracellular compartment immediately below it. We also observed that PMA decreased the pool of Slc26a6 available to surface biotinylation but had no effect on total Slc26a6 expression. The physiological significance of these findings was supported by the observation that PKC activation inhibited mouse duodenal oxalate secretion, an effect blocked by rottlerin. We conclude that multiple modes of anion exchange mediated by Slc26a6 are negatively regulated by PKC- activation. oxalate; formate; chloride; duodenum  相似文献   

5.
Slc26a2 is a ubiquitously expressed SO(4)(2-) transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO(4)(2-) and the ion gradients that mediate SO(4)(2-) uptake are poorly understood. We report here that Slc26a2 functions as an SO(4)(2-)/2OH(-), SO(4)(2-)/2Cl(-), and SO(4)(2-)/OH(-)/Cl(-) exchanger, depending on the Cl(-) and OH(-) gradients. At inward Cl(-) and outward pH gradients (high Cl(-)(o) and low pH(o)) Slc26a2 functions primarily as an SO(4)(2-)(o)/2OH(-)(i) exchanger. At low Cl(-)(o) and high pH(o) Slc26a2 functions increasingly as an SO(4)(2-)(o)/2Cl(-)(i) exchanger. The reverse is observed for SO(4)(2-)(i)/2OH(-)(o) and SO(4)(2-)(i)/2Cl(-)(o) exchange. Slc26a2 also exchanges Cl(-) for I(-), Br(-), and NO(3)(-) and Cl(-)(o) competes with SO(4)(2-) on the transport site. Interestingly, Slc26a2 is regulated by an extracellular anion site, required to activate SO(4)(2-)(i)/2OH(-)(o) exchange. Slc26a2 can transport oxalate in exchange for OH(-) and/or Cl(-) with properties similar to SO(4)(2-) transport. Modeling of the Slc26a2 transmembrane domain (TMD) structure identified a conserved extracellular sequence (367)GFXXP(371) between TMD7 and TMD8 close to the conserved Glu(417) in the permeation pathway. Mutation of Glu(417) eliminated transport by Slc26a2, whereas mutation of Phe(368) increased the affinity for SO(4)(2-)(o) 8-fold while reducing the affinity for Cl(-)(o) 2 fold, but without affecting regulation by Cl(-)(o). These findings clarify the mechanism of net SO(4)(2-) transport and describe a novel regulation of Slc26a2 by an extracellular anion binding site and should help in further understanding aberrant SLC26A2 function in diastrophic dysplasia.  相似文献   

6.
Oxalate:formate exchange. The basis for energy coupling in Oxalobacter   总被引:21,自引:0,他引:21  
In the Gram-negative anaerobe, Oxalobacter formigenes, the generation of metabolic energy depends on the transport and decarboxylation of oxalate. We have now used assays of reconstitution to study the movements of oxalate and to characterize the exchange of oxalate with formate, its immediate metabolic derivative. Membranes of O. formigenes were solubilized with octyl-beta-D-glucopyranoside in the presence of 20% glycerol and Escherichia coli phospholipid, and detergent extracts were reconstituted by detergent dilution. [14C]Oxalate was taken up by proteoliposomes loaded with unlabeled oxalate, but not by similarly loaded liposomes or by proteoliposomes containing sulfate in place of oxalate. Oxalate transport did not depend on the presence of sodium or potassium, nor was it affected by valinomycin (1 microM), nigericin (1 microM), or a proton conductor, carbonylcyanide-p-trifluoromethoxyphenylhydrazone (5 microM) when potassium was at equal concentration on either side of the membrane. Such data suggest the presence of an overall neutral oxalate self-exchange, independent of common cations or anions. Kinetic analysis of the reaction in proteoliposomes gave a Michaelis constant (Kt) for oxalate transport of 0.24 mM and a maximal velocity (Vmax) of 99 mumol/min/mg of protein. A direct exchange of oxalate and formate was indicated by the observations that formate inhibited oxalate transport and that delayed addition of formate released [14C]oxalate accumulated during oxalate exchange. Moreover, [14C]formate was taken up by oxalate-loaded proteoliposomes (but not liposomes), and this heterologous reaction could be blocked by external oxalate. Further studies, using formate-loaded proteoliposomes, suggested that the heterologous exchange was electrogenic. Thus, for assays in which N-methylglucamine served as both internal and external cation, formate-loaded particles took up oxalate at a rate of 2.4 mumol/min/mg of protein. When external or internal N-methylglucamine was replaced by potassium in the presence of valinomycin, there was, respectively, a 7-fold stimulation or an 8-fold inhibition of oxalate accumulation, demonstrating that net negative charge moved in parallel with oxalate during the heterologous exchange. The work summarized here suggests the presence of an unusually rapid and electrogenic oxalate2-:formate1- antiport in membranes of O. formigenes. Since a proton is consumed during the intracellular decarboxylation that converts oxalate into formate plus CO2, antiport of oxalate and formate would play a central role in a biochemical cycle consisting of (a) oxalate influx, (b) oxalate decarboxylation, and (c) formate efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Intestinal oxalate transport, mediated by anion exchange proteins, is important to oxalate homeostasis and consequently to calcium oxalate stone diseases. To assess the contribution of the putative anion transporter (PAT)1 (Slc26a6) to transepithelial oxalate transport, we compared the unidirectional and net fluxes of oxalate across isolated, short-circuited segments of the distal ileum of wild-type (WT) mice and Slc26a6 null mice [knockout (KO)]. Additionally, urinary oxalate excretion was measured in both groups. In WT mouse ileum, there was a small net secretion of oxalate (J(net)(Ox) = -5.0 +/-5.0 pmol.cm(-2).h(-1)), whereas in KO mice J(net)(Ox) was significantly absorptive (75 +/- 10 pmol.cm(-2)h.h(-1)), which was the result of a smaller serosal-to-mucosal oxalate flux (J(sm)(Ox)) and a larger mucosal-to-serosal oxalate flux (J(ms)(Ox)). Mucosal DIDS (200 microM) reduced J(sm)(Ox) in WT mice, leading to reversal of the direction of net oxalate transport from secretion to absorption (J(net)(Ox) = 15.0 +/- 5.0 pmol.cm(-2).h(-1)) , but DIDS had no significant effect on KO ileum. In WT mice in the absence of mucosal Cl(-), there were small increases in J(ms)(Ox) and decreases in J(sm)(Ox) that led to a small net oxalate absorption. In KO mice, J(net)(Ox) was 1.5-fold greater in the absence of mucosal Cl(-), due solely to an increase in J(ms)(Ox). Urinary oxalate excretion was about fourfold greater in KO mice compared with WT littermates. We conclude that PAT1 is DIDS sensitive and mediates a significant fraction of oxalate efflux across the apical membrane in exchange for Cl(-); as such, PAT1 represents a major apical membrane pathway mediating J(sm)(Ox).  相似文献   

8.
Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B).  相似文献   

9.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. Studies of isolated brush-border membrane vesicles confirmed the presence of Na+-H+ exchange and identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanisms of uphill Cl- entry. We found that formate and oxalate each stimulate NaCl absorption in microperfused proximal tubules. Stimulation of NaCl absorption by formate was blocked by the Na+-H+-exchange inhibitor EIPA, whereas stimulation by oxalate was blocked by omission of sulfate from the perfusion solutions. These observations were consistent with recycling of formate from lumen to cell by H+-coupled formate transport in parallel with Na+-H+ exchange and recycling of oxalate by oxalate-sulfate exchange in parallel with Na+-sulfate cotransport. Using isoform-specific antibodies, we found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the loop of Henle. The inhibitor sensitivity of Na+-H+ exchange in renal brush-border vesicles and of HCO3- absorption in microperfused tubules suggested that NHE3 is responsible for most, if not all, apical membrane Na+-H+ exchange in the proximal tubule. The role of NHE3 in mediating proximal tubule HCO3- absorption and formate-dependent Cl- absorption was confirmed by studies in NHE3 null mice. Finally, we cloned and functionally expressed CFEX, an anion transporter expressed on the apical surface of proximal tubule cells and capable of mediating Cl(-)-formate exchange.  相似文献   

10.
The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.  相似文献   

11.
Members of the SLC26 family of anion transporters mediate the transport of diverse molecules ranging from halides to carboxylic acids and can function as coupled transporters or as channels. A unique feature of the two members of the family, Slc26a3 and Slc26a6, is that they can function as both obligate coupled and mediate an uncoupled current, in a channel-like mode, depending on the transported anion. To identify potential features that control the two modes of transport, we performed in silico modeling of Slc26a6, which suggested that the closest potential fold similarity of the Slc26a6 transmembrane domains is to the CLC transporters, despite their minimal sequence identity. Examining the predicted Slc26a6 fold identified a highly conserved glutamate (Glu(-); Slc26a6(E357)) with the predicted spatial orientation similar to that of the CLC-ec1 E148, which determines coupled or uncoupled transport by CLC-ec1. This raised the question of whether the conserved Glu(-) in Slc26a6(E357) and Slc26a3(E367) have a role in the unique transport modes by these transporters. Reversing the Glu(-) charge in Slc26a3 and Slc26a6 resulted in the inhibition of all modes of transport. However, most notably, neutralizing the charge in Slc26a6(E357A) eliminated all forms of coupled transport without affecting the uncoupled current. The Slc26a3(E367A) mutation markedly reduced the coupled transport and converted the stoichiometry of the residual exchange from 2Cl(-)/1HCO(3)(-) to 1Cl(-)/1HCO(3)(-), while completely sparing the current. These findings suggest the possibility that similar structural motif may determine multiple functional modes of these transporters.  相似文献   

12.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

13.
Villi of the proximal duodenum are situated for direct exposure to gastric acid chyme. However, little is known about active bicarbonate secretion across villi that maintains the protective alkaline mucus barrier, a process that may be compromised in cystic fibrosis (CF), i.e., in the absence of a functional CF transmembrane conductance regulator (CFTR) anion channel. We investigated Cl(-)/HCO(3)(-) exchange activity across the apical membrane of epithelial cells located at the midregion of villi in intact duodenal mucosa from wild-type (WT) and CF mice using the pH-sensitive dye BCECF. Under basal conditions, the Cl(-)/HCO(3)(-) exchange rate was reduced by approximately 35% in CF compared with WT villous epithelium. Cl(-)/HCO(3)(-) exchange in WT and CF villi responded similarly to inhibitors of anion exchange, and membrane depolarization enhanced rates of Cl(-)(out)/HCO(3)(-)(in) exchange in both epithelia. In anion substitution studies, anion(in)/HCO(3)(-)(out) exchange rates were greater in WT epithelium using Cl(-) or NO(3)(-), but decreased to the level of the CF epithelium using the CFTR-impermeant anion, SO(4)(2-). Similarly, treatment of WT epithelium with the CFTR-selective blocker glybenclamide decreased the Cl(-)/HCO(3)(-) exchange rate to the level of CF epithelium. The mRNA expression of Slc26a3 (downregulated in adenoma) and Slc26a6 (putative anion exchanger-1) was similar between WT and CF duodena. From these studies of murine duodenum, we conclude 1) characteristics of Cl(-)/HCO(3)(-) exchange in the villous epithelium are most consistent with Slc26a6 activity, and 2) Cl(-) channel activity of CFTR facilitates apical membrane Cl(-)(in)/HCO(3)(-)(out) exchange by providing a Cl(-) "leak" under basal conditions.  相似文献   

14.
Renal and intestinal transport defects in Slc26a6-null mice   总被引:7,自引:0,他引:7  
SLC26A6 (PAT1, CFEX) is an anion exchanger that is expressed on the apical membrane of the kidney proximal tubule and the small intestine. Modes of transport mediated by SLC26A6 include Cl-/formate exchange, Cl-/HCO3- exchange, and Cl-/oxalate exchange. To study its role in kidney and intestinal physiology, gene targeting was used to prepare mice lacking Slc26a6. Homozygous mutant Slc26a6-/- mice appeared healthy and exhibited a normal blood pressure, kidney function, and plasma electrolyte profile. In proximal tubules microperfused with a low-HCO3-/high-Cl- solution, the baseline rate of fluid absorption (Jv), an index of NaCl transport under these conditions, was the same in wild-type and null mice. However, the stimulation of Jv by oxalate observed in wild-type mice was completely abolished in Slc26a6-null mice (P<0.05). Formate stimulation of Jv was partially reduced in null mice, but the difference from the response in wild-type mice did not reach statistical significance. Apical membrane Cl-/base exchange activity, assayed with the pH-sensitive dye BCPCF in microperfused proximal tubules, was decreased by 58% in Slc26a6-/- animals (P<0.001 vs. wild types). In the duodenum, the baseline rate of HCO3- secretion measured in mucosal tissue mounted in Ussing chambers was decreased by approximately 30% (P<0.03), whereas the forskolin-stimulated component of HCO3- secretion was the same in wild-type and Slc26a6-/- mice. We conclude that Slc26a6 mediates oxalate-stimulated NaCl absorption, contributes to apical membrane Cl-/base exchange in the kidney proximal tubule, and also plays an important role in HCO3- secretion in the duodenum.  相似文献   

15.
The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO(4)(2-)(i)/SO(4)(2-)(o) exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO(4)(2-)(i)/Cl(-)(o) exchange). Whereas wild-type AE1 mediates 1:1 H(+)/SO(4)(2-) cotransport in exchange for either Cl(-) or for the H(+)/SO(4)(2-) ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO(4)(2-) transport, both SO(4)(2-)(i)/Cl(-)(o) exchange and SO(4)(2-)(i)/SO(4)(2-)(o) exchange mediated by mutant Ae1 E699Q are inhibited by acidic pH(o) and activated by alkaline pH(o). hAE1 E681OH displays a similarly altered pH(o) dependence of SO(4)(2-)(i)/Cl(-)(o) exchange. Elevated [SO(4)(2-)](i) increases the K(1/2) of Ae1 E699Q for both extracellular Cl(-) and SO(4)(2-), while reducing inhibition of both exchange mechanisms by acid pH(o). The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO(4)(2-). Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters.  相似文献   

16.
Inward Na(+)-HCO(3)(-) cotransport has previously been demonstrated in acidified duodenal epithelial cells, but the identity and localization of the mRNAs and proteins involved have not been determined. The molecular expression and localization of Na(+)-HCO(3)(-) cotransporters (NBCs) were studied by RT-PCR, sequence analysis, and immunohistochemistry. By fluorescence spectroscopy, the intracellular pH (pH(i)) was recorded in suspensions of isolated murine duodenal epithelial cells loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Proximal duodenal epithelial cells expressed mRNA encoding two electrogenic NBC1 isoforms and the electroneutral NBCn1. Both NBC1 and NBCn1 were localized to the basolateral membrane of proximal duodenal villus cells, whereas the crypt cells did not label with the anti-NBC antibodies. DIDS or removal of extracellular Cl(-) increased pH(i), whereas an acidification was observed on removal of Na(+) or both Na(+) and Cl(-). The effects of inhibitors and ionic dependence of acid/base transporters were consistent with both inward and outward Na(+)-HCO(3)(-) cotransport. Hence, we propose that NBCs are involved in both basolateral electroneutral HCO(3)(-) transport as well as basolateral electrogenic HCO(3)(-) transport in proximal duodenal villus cells.  相似文献   

17.
We evaluated the mechanism of oxalate transport in basolateral membrane vesicles isolated from the rabbit renal cortex. An outward HCO3- gradient induced the transient uphill accumulation of oxalate and sulfate, indicating the presence of oxalate/HCO3- exchange and sulfate/HCO3- exchange. For oxalate, sulfate, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, the K1/2 value for oxalate/HCO3- exchange was nearly identical to that for sulfate/HCO3- exchange, suggesting that both exchange processes occur via the same transport system. This was further supported by the finding of sulfate/oxalate exchange. Thiosulfate/sulfate exchange and thiosulfate/oxalate exchange were also demonstrated, but a variety of other tested anions including Cl-, p-aminohippurate, and lactate did not exchange for sulfate or oxalate. Na+ did not affect sulfate or oxalate transport, indicating that neither anion undergoes Na+ co-transport or Na+-dependent anion exchange in these membrane vesicles. Finally, we found that the stoichiometry of exchange is 1 sulfate or oxalate per 2 HCO3-, or a thermodynamically equivalent process. We conclude that oxalate, but not other organic or inorganic anions of physiologic importance, can share the sulfate/HCO3- exchanger in renal basolateral membrane vesicles. In series with luminal membrane oxalate/Cl- (formate) exchange, exchange of oxalate for HCO3- or sulfate across the basolateral membrane provides a possible transcellular route for oxalate transport in the proximal tubule.  相似文献   

18.
This paper describes characteristics of the transport of oxalate across the human erythrocyte membrane. Treatment of cells with low concentrations of H2DIDS (4,4'-diisothiocyanatostilbene-2,2'- disulfonate) inhibits Cl(-)-Cl- and oxalate-oxalate exchange to the same extent, suggesting that band 3 is the major transport pathway for oxalate. The kinetics of oxalate and Cl- self-exchange fluxes indicate that the two ions compete for a common transport site; the apparent Cl- affinity is two to three times higher than that of oxalate. The net exchange of oxalate for Cl-, in either direction, is accompanied by a flux of H+ with oxalate, as is also true of net Cl(-)-SO4(2-) exchange. The transport of oxalate, however, is much faster than that of SO4(2-) or other divalent anions. Oxalate influx into Cl(-)-containing cells has an extracellular pH optimum of approximately 5.5 at 0 degrees C. At extracellular pH below 5.5 (neutral intracellular pH), net Cl(-)- oxalate exchange is nearly as fast as Cl(-)-Cl- exchange. The rapid Cl(- )-oxalate exchange at acid extracellular pH is not likely to be a consequence of Cl- exchange for monovalent oxalate (HOOC-COO-; pKa = 4.2) because monocarboxylates of similar structure exchange for Cl- much more slowly than does oxalate. The activation energy of Cl(-)- oxalate exchange is about 35 kCal/mol at temperatures between 0 and 15 degrees C; the rapid oxalate influx is therefore not a consequence of a low activation energy. The protein phosphatase inhibitor okadaic acid has no detectable effect on oxalate self-exchange, in contrast to a recent finding in another laboratory (Baggio, B., L. Bordin, G. Clari, G. Gambaro, and V. Moret. 1993. Biochim. Biophys. Acta. 1148:157-160.); our data provide no evidence for physiological regulation of anion exchange in red cells.  相似文献   

19.
Regulation of intra- and extracellular ion activities (e.g. H(+), Cl(-), Na(+)) is key to normal function of the central nervous system, digestive tract, respiratory tract, and urinary system. With our cloning of an electrogenic Na(+)/HCO(3)(-) cotransporter (NBC), we found that NBC and the anion exchangers form a bicarbonate transporter superfamily. Functionally three other HCO(3)(-) transporters are known: a neutral Na(+)/ HCO(3)(-) cotransporter, a K(+)/ HCO(3)(-) cotransporter, and a Na(+)-dependent Cl(-)-HCO(3)(-) exchanger. We report the cloning and characterization of a Na(+)-coupled Cl(-)-HCO(3)(-) exchanger and a physiologically unique bicarbonate transporter superfamily member. This Drosophila cDNA encodes a 1030-amino acid membrane protein with both sequence homology and predicted topology similar to the anion exchangers and NBCs. The mRNA is expressed throughout Drosophila development and is prominent in the central nervous system. When expressed in Xenopus oocytes, this membrane protein mediates the transport of Cl(-), Na(+), H(+), and HCO(3)(-) but does not require HCO(3)(-). Transport is blocked by the stilbene 4,4'-diisothiocyanodihydrostilbene- 2, 2'-disulfonates and may not be strictly electroneutral. Our functional data suggest this Na(+) driven anion exchanger (NDAE1) is responsible for the Na(+)-dependent Cl(-)-HCO(3)(-) exchange activity characterized in neurons, kidney, and fibroblasts. NDAE1 may be generally important for fly development, because disruption of this gene is apparently lethal to the Drosophila larva.  相似文献   

20.
This review will briefly summarize current knowledge on the renal anion transporters sodium-sulfate cotransporter-1 (NaS1; Slc13a1) and sulfate-anion transporter-1 (Sat1; Slc26a1). NaS1 and Sat1 mediate renal proximal tubular sulfate reabsorption and thereby regulate blood sulfate levels. Sat1 also mediates renal oxalate transport and controls blood oxalate levels. Targeted disruption of murine NaS1 and Sat1 leads to hyposulfatemia and hypersulfaturia. Sat1 null mice also exhibit hyperoxalemia, hyperoxaluria, and calcium oxalate urolithiasis. NaS1 and Sat1 null mice also have other phenotypes that result due to changes in blood sulfate and oxalate levels. Experimental data indicate that NaS1 is essential for maintaining sulfate homeostasis, whereas Sat1 controls both sulfate and oxalate homeostasis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号