首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fichtner C  Laurich C  Bothe E  Lubitz W 《Biochemistry》2006,45(32):9706-9716
The active site in the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F has been investigated by Fourier transform infrared (FTIR) spectroscopy. Analysis of the spectra allowed the three diatomic inorganic ligands to Fe in this enzyme to be identified as one CO molecule and two CN(-) molecules. Furthermore, pH-dependent redox titrations were performed to determine the midpoint potentials as well as the pK value of the respective reactions and revealed that each single-electron redox transition is accompanied by a single-proton transfer step. The comparison of these spectra with those published for other [NiFe] hydrogenases shows that the electronic structure of the active sites of these enzymes and their redox processes are essentially the same. Nevertheless, differences with respect to the frequency of the CO band and the pH dependence of the Ni-R states have been observed. Finally, the frequency shifts of the bands in the IR spectra were interpreted with respect to the electronic configuration of the redox intermediates in the catalytic cycle.  相似文献   

2.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

3.
[NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni–Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm?1 of the Ni-A state shifted to 1971, 2086 and 2098 cm?1 in the Ni-AL state. The g-values of gx = 2.30, gy = 2.23 and gz = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for ?0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.  相似文献   

4.
The Ni-A and the Ni-B forms of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F have been studied in single crystals by continuous wave and pulsed EPR spectroscopy at different temperatures (280?K, 80?K, and 10?K). For the first time, the orientation of the g-tensor axes with respect to the recently published atomic structure of the active site at 1.8?Å resolution was elucidated for Ni-A and Ni-B. The determined g-tensors have a similar orientation. The configuration of the electronic ground state is proposed to be Ni(III) 3d 1 z2 for Ni-A and Ni-B. The g z principal axis is close to the Ni-S(Cys549) direction; the g x and the g y axes are approximately along the Ni-S(Cys546) and Ni-S(Cys81) bonds, respectively. It is proposed that the difference between the Ni-A and Ni-B states lies in a protonation of the bridging ligand between the Ni and the Fe.  相似文献   

5.
Single crystals of hydrogenase from Desulfovibrio vulgaris Miyazaki F   总被引:2,自引:0,他引:2  
The hydrogenase solubilized from the particulate fraction from Desulfovibrio vulgaris Miyazaki F (IAM 12604) has been crystallized. Although the solubilized hydrogenase purified by the previous method (Yagi, T., Kimura, K., Daidoji, H., Sakai, F., Tamura, S., and Inokuchi, H. (1976) J. Biochem. (Tokyo) 79,661-671) revealed a single band upon disc electrophoresis, it could not be crystallized. The apparently homogeneous hydrogenase has been separated into three components of similar molecular weights by high performance liquid chromatography on DEAE-Toyopearl. Each hydrogenase component was successfully crystallized by means of the vapor diffusion method with polyethylene glycol or 2-methyl-2,4-pentanediol as a precipitating agent. Seeding procedure is necessary to grow an x-ray grade crystal. Preliminary x-ray experiments reveal that crystals grown from one component are in space group of P2(1)2(1)2(1) with a = 102.1(1), b = 126.8 (3), and c = 66.9(1) A. The unit cell volume of 8.66 X 10(5) A3 suggests that it contains one molecule/asymmetric unit (Vm = 2.43). The crystals grown from another component are in the same space group with a = 99.6(1), b = 126.8(3), c = 66.9(1) A, and the unit cell volume is 8.45 X 10(5) A3 (Vm = 2.37). The crystals diffract more than 2.5 A and are suitable for complete crystal analysis. Up to 4 A resolution native data have been collected on a diffractometer.  相似文献   

6.
The complete primary structure of the hyn-region in the genome of Desulfovibrio vulgaris Miyazaki F (DvMF), encoding the [NiFe]-hydrogenase and two maturation proteins has been identified. Besides the formerly reported genes for the large and small subunits, this region comprises genes encoding an endopeptidase (HynC) and a putative chaperone (HynD). The complete genomic region covers 4086 nucleotides including the previously published upstream located promoter region and the sequences of the structural genes. A phylogenetic tree for both maturation proteins shows strongest sequential relationship to the orthologous proteins of Desulfovibrio vulgaris Hildenborough (DvH). Secondary structure prediction for HynC (168 aa, corresponding to a molecular weight of 17.9 kDa) revealed a practically identical arrangement of α-helical and β-strand elements between the orthologous protein HybD from E. coli and allowed a three-dimensional modelling of HynC on the basis of the formerly published structure of HybD. The putative chaperone HynD consists of 83 aa (molecular weight of 9 kDa) and shows 76% homology to DvH HynD. Preliminary experiments demonstrate that the operon is expressed under the control of its own promoter in Escherichia coli, although no further processing could be observed, providing evidence that additional proteins have to be involved in the maturation process. Accession numbers: DQ072852, HynC protein ID AAY90127, HynD protein ID AAY90128.  相似文献   

7.
The catalytic center of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F in the oxidized states was investigated by electron paramagnetic resonance and electron–nuclear double resonance spectroscopy applied to single crystals of the enzyme. The experimental results were compared with density functional theory (DFT) calculations. For the Ni-B state, three hyperfine tensors could be determined. Two tensors have large isotropic hyperfine coupling constants and are assigned to the β-CH2 protons of the Cys-549 that provides one of the bridging sulfur ligands between Ni and Fe in the active center. From a comparison of the orientation of the third hyperfine tensor with the tensor obtained from DFT calculations an OH bridging ligand has been identified in the Ni-B state. For the Ni-A state broader signals were observed. The signals of the third proton, as observed for the “ready” state Ni-B, were not observed at the same spectral position for Ni-A, confirming a structural difference involving the bridging ligand in the “unready” state of the enzyme. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Maurice van Gastel and Matthias Stein contributed equally to this work.  相似文献   

8.
The active site of [NiFe] hydrogenase is a binuclear metal complex composed of Fe and Ni atoms and is called the Ni–Fe site, where the Fe atom is known to be coordinated to three diatomic ligands. Two mass spectrometric techniques, pyrolysis-MS (pyrolysis-mass spectrometry) and TOF-SIMS (time-of-flight secondary ion mass spectrometry), were applied to several proteins, including native and denatured forms of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F, [Fe4S4]2-ferredoxin from Clostridium pasteurianum, [Fe2S2]-ferredoxin from Spirulina platensis, and porcine pepsin. Pyrolysis-MS revealed that only native hydrogenase liberated SO/SO2 (ions of m/z 48 and 64 at an equilibrium ratio of SO and SO2) at relatively low temperatures before the covalent bonds in the polypeptide moiety started to decompose. TOF-SIMS indicated that native Miyazaki hydrogenase released SO/SO2 (m/z 47.97 and 63.96) as secondary ions when irradiated with a high-energy Ga+ beam. Denatured hydrogenase, clostridial ferredoxin, and pepsin did not release SO as a secondary ion. The FT-IR spectrum of the enzyme suggested the presence of CO and CN. These lines of evidence suggest that the three diatomic ligands coordinated to the Fe atom at the Ni–Fe site in Miyazaki hydrogenase are SO, CO, and CN. The role of the SO ligand in helping to cleave H2 molecules at the active site and stabilizing the Fe atom in the diamagnetic Fe(II) state in the redox cycle of this enzyme is discussed.  相似文献   

9.
Cytochrome c553 from the sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki, has been crystallized. The combination of microdialysis and vapor diffusion allowed successful crystallization. The crystals were of good quality, and useful data were obtained that extended to the nominal resolution of 1.3 A. The space group is P4(3)2(1)2 with cell dimensions of a = b = 42.7 A, c = 103.4 A. More than twenty heavy-atom reagents were screened with the isomorphous replacement technique, and only the mersalyl derivative could be used for the phase determination. The single isomorphous replacement method combined with the anomalous scattering effect of the Hg-atom in mersalyl and the Fe-atom of the heme group was used for the phase determination.  相似文献   

10.
Anti-sera for hydrogenase, cytochrome c3, and desulfoviridin (abbreviated as anti-hyd, anti-c3, and anti-dvn, respectively) were raised in mice, and used to locate these antigens in cells of Desulfovibrio vulgaris Miyazaki. The activity of the intact cells to absorb H2 with methyl viologen or sulfite as an electron acceptor was cumulatively inhibited by treating the cells with anti-hyd and anti-c3 but unaffected by anti-dvn treatment. The activity of the intact cells to produce H2 from formate was also inhibited by anti-c3 treatment, but the inhibition by anti-hyd treatment was not significant. The fluorescent antibody technique applied to intact cells of D. vulgaris Miyazaki indicated that both hydrogenase and cytochrome c3 are localized on the surface of the cell. These results are not exactly in conformity with the hydrogen-cycling hypothesis for proton gradient formation in the energy metabolism in Desulfovibrio. The procedure described in the present paper provides a new technique to elucidate the roles of proteins by applying anti-sera to intact cells without destroying the cellular structure.  相似文献   

11.
Hydrogenases from Desulfovibrio are found to catalyze hydrogen uptake with low potential multiheme cytochromes, such as cytochrome c3, acting as acceptors. The production of Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough was improved with respect to the growth phase and media to determine the best large-scale bacteria growth conditions. The interaction and electron transfer from Fe-only hydrogenase to multiheme cytochrome has been studied in detail by both BIAcore and steady-state measurements. The electron transfer between [Fe] hydrogenase and cytochrome c3 appears to be a cooperative phenomenon (h = 1.37). This behavior could be related to the conductivity properties of multihemic cytochromes. An apparent dissociation constant was determined (2 × 10-7 M). The importance of the cooperativity for contrasting models proposed to describe the functional role of the hydrogenase/cytochrome c3 complex is discussed. Presently, the only determined structure is from [NiFe] hydrogenase and there are no obvious similarities between [NiFe] and [Fe] hydrogenase. Furthermore, no crystallographic data are available concerning [Fe] hydrogenase. The first results on crystallization and X-ray crystallography are reported. Proteins 33:590–600, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

13.
Periplasmic hydrogenase [hydrogen:ferricytochrome c3 oxidoreductase, EC 1.12.2.1] from Desulfovibrio vulgaris Miyazaki K (MK) was purified to homogeneity. Its chemical and immunological properties were examined and compared with those of other Desulfovibrio hydrogenases. The pure enzyme showed a specific activity of 1,000 mumol H2 evolution min-1 (mg protein)-1. The enzyme had a molecular weight of 50,000 as estimated by gel filtration and consisted of a single polypeptide chain. The absorption spectrum of the enzyme was characteristic of an iron-sulfur protein and the extinction coefficients at 400 and 280 nm were 34 and 104 mM-1. cm-1, respectively. It contained 9.4 mol iron and 6.9 mol of acid-labile sulfide per mol. The amino acid composition of the preparation was very similar to the value reported for D. desulfuricans NRC 49001 hydrogenase. Rabbit antisera were prepared against the enzyme of D. vulgaris MK. Ouchterlony double diffusion and immunotitration tests of crude extracts from several strains of Desulfovibrio revealed that the enzyme from MK cells was immunologically identical with those from D. vulgaris Hildenborough and D. desulfuricans NRC 49001, but different from those from D. vulgaris Miyazaki F (MF) and Miyazaki Y, and D. desulfuricans Essex 6 strains. It is concluded that among Desulfovibrio hydrogenases, those from D. vulgaris MK, D. vulgaris Hildenborough and D. desulfuricans NRC 49001 form one group in terms of both subunit structure and antigenicity.  相似文献   

14.
Hexadecaheme high molecular weight cytochrome c from a sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki F has been successfully purified and crystallized. X-ray diffraction data have been collected by the multiple wavelength anomalous dispersion method. The crystal belongs to the space group P2(1)2(1)2(1) with unit-cell parameters a=60.42, b=84.29 and c=144.16 A and contains one molecule per asymmetric unit.  相似文献   

15.
16.
The structure of tetraheme cytochrome c3 isolated from Desulfovibrio vulgaris Miyazaki has been determined at 2.5 A resolution by an X-ray diffraction method. Protein phases were computed by the multiple isomorphous replacement method using the native and four heavy atom derivatives, anomalous scattering measurements of the latter being considered. The mean figure of merit was 0.77. Four heme groups are exposed on the surface of the molecule. There are some short helical segments in the polypeptide chain, and hair-pin turns are often observed at glycine and alanine residues.  相似文献   

17.
We present a new examination of the EPR redox titration data for the tetraheme cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Our analysis includes the contribution of the interaction potentials between the four redox sites and is based on the model previously developed for the study of cytochrome c3 from Desulfovibrio desulfuricans Norway. We observed, as for D. desulfuricans Norway cytochrome c3, that the conformation of the heme with the lowest redox potential, heme 4, is sensitive to the redox state of the heme with the highest potential, heme 1. However in D. vulgaris Miyazaki cytochrome c3 spectral simulations show that heme 4 is present in two conformational states which interconvert partially when heme 1 is reduced. The sets of redox parameters which satisfy the fitting procedure of the titration curves are in the following domain: -250 mV less than or equal to e41 less than or equal to -220 mV, -325 mV less than or equal to e2 less than or equal to -320 mV, -335 mV less than or equal to e3 less than or equal to -330 mV, -360 mV less than or equal to e4 less than or equal to -355 mV, -5 mV less than or equal to I12 less than or equal to 20 mV, -10 mV less than or equal to I13 less than or equal to 5 mV, -15 mV less than or equal to I23 less than or equal to -5 mV, -15 mV less than or equal to I24 less than or equal to -10 mV, -25 mV, less than or equal to I34 less than or equal to -15 mV. As in D. desulfuricans Norway cytochrome c3 the interactions are moderate. Simple electrostatic considerations suggest that these moderate values could be related to the large accessibility of the hemes to the solvent. Our work does not confirm the existence of a cooperative interaction between heme 2 and heme 3 which has been proposed on the basis of electrochemical measurements.  相似文献   

18.
Two crystalline forms of cytochrome c3 isolated from two strains of Desulfovibrio vulgaris, Miyazaki, tentatively designated as D. vulgaris, Miyazki F and D. vulgaris, Miyazaki K, have been found. Both belong to the orthorhombic system, space group P2(1)2(1)2(1), but have different cell dimensions; a=54.1, b=68.9 and c=35.0 A for D. vulgaris, Miyazaki F, and a=43.5, b=41.2, and c=62.9 A for D. vulgaris, Miyazaki K. The asymmetric unit of each crystal contains one molecule of cytochrome c3.  相似文献   

19.
Tyrosine 43 is positioned parallel to the fifth heme axial ligand, His34, of heme 1 in the tetraheme cytochrome c(3). The replacement of tyrosine with leucine increased the redox potential of heme 1 by 44 and 35 mV at the first and last reduction steps, respectively; its effects on the other hemes are small. In contrast, the Y43F mutation hardly changed the potentials. It shows that the aromatic ring at this position contributes to lowering the redox potential of heme 1 locally, although this cannot be the major contribution to the extremely low redox potentials of cytochrome c(3). Furthermore, temperature-dependent line-width broadening in partially reduced samples established that the aromatic ring at position 43 participates in the control of the kinetics of intramolecular electron transfer. The rate of reduction of Y43L cytochrome c(3) by 5-deazariboflavin semiquinone under partially reduced conditions was significantly different from that of the wild type in the last stage of the reduction, supporting the involvement of Tyr43 in regulation of reduction kinetics. The mutation of Y43L, however, did not induce a significant change in the crystal structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号