首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stepwise assembly of the highly dynamic spliceosome is guided by RNA-dependent ATPases of the DEAD-box family, whose regulation is poorly understood. In the canonical assembly model, the U4/U6.U5 triple snRNP binds only after joining of the U1 and, subsequently, U2 snRNPs to the intron-containing pre-mRNA. Catalytic activation requires the exchange of U6 for U1 snRNA at the 5′ splice site, which is promoted by the DEAD-box protein Prp28. Because Prp8, an integral U5 snRNP protein, is thought to be a central regulator of DEAD-box proteins, we conducted a targeted search in Prp8 for cold-insensitive suppressors of a cold-sensitive Prp28 mutant, prp28-1. We identified a cluster of suppressor mutations in an N-terminal bromodomain-like sequence of Prp8. To identify the precise defect in prp28-1 strains that is suppressed by the Prp8 alleles, we analyzed spliceosome assembly in vivo and in vitro. Surprisingly, in the prp28-1 strain, we observed a block not only to spliceosome activation but also to one of the earliest steps of assembly, formation of the ATP-independent commitment complex 2 (CC2). The Prp8 suppressor partially corrected both the early assembly and later activation defects of prp28-1, supporting a role for this U5 snRNP protein in both the ATP-independent and ATP-dependent functions of Prp28. We conclude that the U5 snRNP has a role in the earliest events of assembly, prior to its stable incorporation into the spliceosome.  相似文献   

2.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

3.
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.  相似文献   

4.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

5.
Through UV-crosslinking experiments, we previously provided evidence suggesting that a U5 snRNP protein with a molecular weight in the 100-kDa range is an ATP-binding protein (Laggerbauer B, Lauber J, Lührmann R, 1996, Nucleic Acid Res 24:868-875). Separation of HeLa U5 snRNP proteins on 2D gels revealed multiple variants with apparent molecular masses of 100 kDa. Subsequent microsequencing of these variants led to the isolation of a cDNA encoding a protein with an N-terminal RS domain and a C-terminal domain that contains all of the conserved motifs characteristic of members of the DEAD-box family of RNA-stimulated ATPases and RNA helicases. Antibodies raised against cDNA-encoded 100-kDa protein specifically recognized native U5-100kD both on immunoblots and in purified HeLa U5 snRNPs or [U4/U6.U5] tri-snRNP complexes, confirming that the bona fide 100-kDa cDNA had been isolated. In vitro phosphorylation studies demonstrated that U5-100kD can serve as a substrate for both Clk/Sty and the U1 snRNP-associated kinase, and further suggested that the multiple U5-100kD variants observed on 2D gels represent differentially phosphorylated forms of the protein. A database homology search revealed a significant degree of homology (60% similarity, 37% identity) between the Saccharomyces cerevisiae splicing factor, Prp28p, which lacks an N-terminal RS domain, and the C-terminal domain of U5-100kD. Consistent with their designation as structural homologues, anti-Prp28 antibodies recognized specifically the human U5-100kD protein on immunoblots. Together with the DEXH-box U5-200kD protein (Lauber J et al., 1996, EMBO J 15:4001-4015), U5-100kD is the second example of a putative RNA helicase that is tightly associated with the U5 snRNP. Given the recent identification of the U5-116kD protein as a homologue of the ribosomal translocase EF-2 (Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R, 1997, EMBO J 16:4092-4106), at least three integral U5 snRNP proteins thus potentially facilitate conformational changes in the spliceosome during nuclear pre-mRNA splicing.  相似文献   

6.
Communication between U1 and U2 snRNPs is critical during pre-spliceosome assembly; yet, direct connections have not been observed. To investigate this assembly step, we focused on Prp5, an RNA-dependent ATPase of the DExD/H family. We identified homologs of Saccharomyces cerevisiae Prp5 in humans (hPrp5) and Schizosaccharomyces pombe (SpPrp5), and investigated their interactions and function. Depletion and reconstitution of SpPrp5 from extracts demonstrate that ATP binding and hydrolysis by Prp5 are required for pre-spliceosome complex A formation. hPrp5 and SpPrp5 are each physically associated with both U1 and U2 snRNPs; Prp5 contains distinct U1- and U2-interacting domains that are required for pre-spliceosome assembly; and, we observe a Prp5-associated U1/U2 complex in S. pombe. Together, these data are consistent with Prp5 being a bridge between U1 and U2 snRNPs at the time of pre-spliceosome formation.  相似文献   

7.
The role of U5 snRNP in pre-mRNA splicing.   总被引:12,自引:2,他引:12       下载免费PDF全文
A J Newman 《The EMBO journal》1997,16(19):5797-5800
The current model for the function of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome proposes that U5 carries binding sites for the 5' and 3' exons, allowing the spliceosome to 'tether' the 5' exon intermediate produced by the first catalytic step and align it with the 3' exon for the second step. Functional analysis of U5 snRNA in cis-spliceosomes has provided support for this model, and data from nematode and trypanosome splicing systems suggest that U5 or a U5-like snRNA performs a similar role in trans-splicing.  相似文献   

8.
We showed previously that the yeast Prp4 protein is a spliceosomal factor that is tightly associated with the U4, U5, and U6 small nuclear RNAs. Moreover, Prp4 appears to associate very transiently with the spliceosome before the U4 snRNA dissociates from the spliceosome. Prp4 belongs to the Gbeta-like protein family, which suggests that the Prp4 Gbeta motifs could mediate interactions with other components of the spliceosome. To investigate the function of the Gbeta motifs, we introduced mutations within the second WD-repeat of Prp4. Among the 35 new alleles found, 24 were pseudo wild-type mutants, 8 failed to grow at any temperature, and 3 were conditional sensitive mutants. The biochemical defects of the three thermosensitive prp4 mutants have been examined by immunoprecipitation, native gel electrophoresis, and glycerol gradient centrifugation. First, we show that snRNP formation is not impaired in these mutants and that Prp4 is present in the U4/U6 and U4/U6-U5 snRNP particles. We also demonstrate that spliceosome assembly is largely unaffected despite the fact that the first step of splicing does not occur. However, both Prp4 and U4 snRNA remain tightly associated with the spliceosome and this blocks the transition toward an active form of the spliceosome. Our results suggest a possible role of Prp4 in mediating important conformational rearrangements of proteins within the spliceosome that involve the region containing the Gbeta-repeats.  相似文献   

9.
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.  相似文献   

10.
Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.  相似文献   

11.
The DExD/H-box Prp5 protein (Prp5p) is an essential, RNA-dependent ATPase required for pre-spliceosome formation during nuclear pre-mRNA splicing. In order to understand how this protein functions, we used in vitro, biochemical assays to examine its association with the spliceosome from Saccharomyces cerevisiae. GST-Prp5p in splicing assays pulls down radiolabeled pre-mRNA as well as splicing intermediates and lariat product, but reduced amounts of spliced mRNA. It cosediments with active spliceosomes isolated by glycerol gradient centrifugation. In ATP-depleted extracts, GST-Prp5p associates with pre-mRNA even in the absence of spliceosomal snRNAs. Maximal selection in either the presence or absence of ATP requires a pre-mRNA with a functional intron. Prp5p is present in the commitment complex and functions in subsequent pre-spliceosome formation. Reduced Prp5p levels decrease levels of commitment, pre-spliceosomal and spliceosomal complexes. Thus Prp5p is most likely an integral component of the spliceosome, being among the first splicing factors associating with pre-mRNA and remaining until spliceosome disassembly. The results suggest a model in which Prp5p recruits the U2 snRNP to pre-mRNA in the commitment complex and then hydrolyzes ATP to promote stable association of U2 in the pre-spliceosome. They also suggest that Prp5p could have multiple ATP-independent and ATP-dependent functions at several stages of the splicing cycle.  相似文献   

12.
Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5′ splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing.  相似文献   

13.
14.
U6 spliceosomal RNA has a complex secondary structure that includes a highly conserved stemloop near the 3' end. The 3' stem is unwound when U6 RNA base-pairs with U4 RNA during spliceosome assembly, but likely reforms when U4 RNA leaves the spliceosome prior to the catalysis of splicing. A mutation in yeast U6 RNA that hyperstabilizes the 3' stem confers cold sensitivity and inhibits U4/U6 assembly as well as a later step in splicing. Here we show that extragenic suppressors of the 3' stem mutation map to the gene coding for splicing factor Prp24. The suppressor mutations are located in the second and third of three RNA-recognition motifs (RRMs) in Prp24 and are predicted to disrupt RNA binding. Mutations in U6 RNA predicted to destabilize a novel helix adjacent to the 3' stem also suppress the 3' stem mutation and enhance the growth defect of a suppressor mutation in RRM2 of Prp24. Both phenotypes are reverted by a compensatory mutation that restores pairing in the novel helix. These results are best explained by a model in which RRMs 2 and 3 of Prp24 stabilize an extended intramolecular structure in U6 RNA that competes with the U4/U6 RNA interaction, and thus influence both association and dissociation of U4 and U6 RNAs during the splicing cycle.  相似文献   

15.
This study reports the cloning, sequencing, and development of antisera against the human U5 snRNP 220-kDa protein or hPrp8p. Prp8p is the most highly conserved large nuclear protein known to date, but it is not related to any other protein. Southern, Northern, and expressed sequence tag analyses indicate that hPrp8p is encoded by a single gene. Prp8p is a core component of U5 snRNP and the U4/U6.U5 tri-snRNP, and antibodies raised against it immunoprecipitate both the major, U2-dependent and minor, U12-dependent spliceosomes. These spliceosomes, which excise different classes of introns, contain distinct sets of snRNAs overlapping only with U5 snRNA. Other than the core Sm proteins, hPrp8p is the first splicing factor shown to be common to both spliceosomes.  相似文献   

16.
Kuhn AN  Brow DA 《Genetics》2000,155(4):1667-1682
The highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.  相似文献   

17.
The human splicing factor U2 auxiliary factor (hsU2AF) is comprised of two interacting subunits of 65 and 35 kDa. Previously we identified the Schizosaccharomyces pombe homolog, spU2AF59, of the human large subunit. We have screened a fission yeast cDNA library in search of proteins that interact with spU2AF59 using the yeast two-hybrid system and have identified a homolog of the hsU2AF35 subunit. The S. pombe U2AF small subunit is a single copy gene that encodes a protein which shares 55% amino acid identity and 17% similarity with the human small subunit. Unlike the human protein, the yeast protein lacks an arginine/serine-rich region. The predicted molecular mass of the spU2AF small subunit is 23 kDa. The region of spU2AF59 that interacts with spU2AF23 is similar to the region in which the human small and large subunits interact.  相似文献   

18.
19.
20.
We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from the snu17 deletion (snu17Delta) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Delta spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号